• 제목/요약/키워드: Sound Interaction

Search Result 280, Processing Time 0.023 seconds

A Study on "A Midsummer Night's Palace" Using VR Sound Engineering Technology

  • Seok, MooHyun;Kim, HyungGi
    • International Journal of Contents
    • /
    • v.16 no.4
    • /
    • pp.68-77
    • /
    • 2020
  • VR (Virtual Reality) contents make the audience perceive virtual space as real through the virtual Z axis which creates a space that could not be created in 2D due to the space between the eyes of the audience. This visual change has led to the need for technological changes to sound and sound sources inserted into VR contents. However, studies to increase immersion in VR contents are still more focused on scientific and visual fields. This is because composing and producing VR sounds require professional views in two areas: sound-based engineering and computer-based interactive sound engineering. Sound-based engineering is difficult to reflect changes in user interaction or time and space by directing the sound effects, script sound, and background music according to the storyboard organized by the director. However, it has the advantage of producing the sound effects, script sound, and background music in one track and not having to go through the coding phase. Computer-based interactive sound engineering, on the other hand, is produced in different files, including the sound effects, script sound, and background music. It can increase immersion by reflecting user interaction or time and space, but it can also suffer from noise cancelling and sound collisions. Therefore in this study, the following methods were devised and utilized to produce sound for VR contents called "A Midsummer Night" so as to take advantage of each sound-making technology. First, the storyboard is analyzed according to the user's interaction. It is to analyze sound effects, script sound, and background music which is required according to user interaction. Second, the sounds are classified and analyzed as 'simultaneous sound' and 'individual sound'. Thirdly, work on interaction coding for sound effects, script sound, and background music that were produced from the simultaneous sound and individual time sound categories is done. Then, the contents are completed by applying the sound to the video. By going through the process, sound quality inhibitors such as noise cancelling can be removed while allowing sound production that fits to user interaction and time and space.

Auditory Interaction Design By Impact Sound Synthesis for Virtual Environment (충돌음 합성에 의한 가상환경의 청각적 인터랙션 디자인)

  • Nam, Yang-Hee
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.5
    • /
    • pp.1-8
    • /
    • 2013
  • Focused on the fact that sound is one of the important sensory cues delivering situations such as impact, this paper proposes an auditory interaction design approach for virtual environment. Based on a few sampling of basic material sound for various materials such as steel, rubber, and glass, the proposed method enables design transformations of the basic sound by allowing modification of mode gains that characterize natural sound for the material. In real-time virtual environment, it also provides simulation of modified sound according to the change of impact situation's perceptual properties such as colliding objects' size, hardness, contacting area, and speed. The test results on cognition experiment for discriminating objects' materials and impact situation by sound showed the feasibility of proposed auditory interaction design method.

A free vibration analysis of sound-structure interaction plate having a small cut-out (부분적으로 열린 구조-음향 연성평판의 자유진동해석)

  • Oh, Jae-Eung;Rhee, Dong-Ick
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.10
    • /
    • pp.1666-1673
    • /
    • 1997
  • In order to investigate the characteristics of sound-structure interaction plate having a cut-out, we modeled a rectangular cavity and the flexible plate of the cavity. Because the particle velocity of air is the same as that of plate on the plate, we could easily redefine vibration equation using the velocity potential. We calculated the natural frequencies of plate using orthogonal polynomial functions which satisfy the boundary conditions in the Rayleigh-Ritz method. For the change of vibration characteristics, the effect of sound-structure interaction is more dominant than that of cut-out size.

A Free Vibration Analysis of Sound-Structure Interaction Plate (구조-음향 연성평판의 자유진동해석)

  • Lee, Dong-Ick;O, Jae-Eung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.8
    • /
    • pp.2546-2554
    • /
    • 1996
  • In order to investigate the characteristics of sound-structure interaction problems, we modeled a rectangular cavity and the flexible wall of the cavity. Because the governing equations of motion are coupled through velocity terms, we could redefine them using the velocity potential. We calculated the natural frequencies of plate using orthogonal polynomial functions which satisfy the boundary conditions in the Rayleigh-Ritz Method. As the result, comparisons of theory and experiment show good agreement. and using orthogonal polynomial functions which satisfy the boundary conditions in the Rayleigh-Ritz method show useful method for sound-structure interaction problems too.

A Discussion on the Concept of Sound Home and Healthy Family (건전가정과 건강가족의 개념 설정에 대한 논의)

  • 유영주
    • Journal of Families and Better Life
    • /
    • v.17 no.3
    • /
    • pp.93-102
    • /
    • 1999
  • This paper is to clarify the concepts of "sound home" and "healthy family" Even though "sound home" and "healthy family have different meanings and definitions. many researchers are using them in a mixed ways. Therefore through this paper I tried to make distinction of the meanings of the above concepts as below: 1. Sound Home : Basic and fundamental social units and environment which have strong and healthy family members and performs well not only family function but also have attitudes and willingness to perform family function and maintain their family value and ethics. 2. Healthy Family : Social units which have strong and healthy family members and develop individual personal development -their physical emotional social moral development and self-esteem self-achievemet -and have good interaction enhancement skills- communication decision making stress managing strategies- and also maintain family systems. Whereas "sound home" is more broad concept related to Home Econom cs "healthy family" is more related family relations and interaction.quot; is more related family relations and interaction.

  • PDF

Jet-Edge Interaction and Sound Radiation in Edgetones (쐐기소리에서 분류-쐐기의 상호작용과 소리의 방사)

  • ;Powell A.
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.3
    • /
    • pp.584-590
    • /
    • 1994
  • A theoretical model has been developed to analyze the jet-edge interaction and the sound radiation. The edge responding to the sinuous impinging jet is regarded as an array of dipoles and their strength is determined by the boundary condition on the edge surface. The surface pressure distribution and the edgeforce are estimated using these dipoles. Then the pressure amplitude and directivity of the sound field is obtained by summing the radiating sounds from the dipole sources. It is found that the effective source is located a little distance downstream from the edge tip. And the directivity of the sound radiation is cardioid pattern near the edge but dipole pattern far from the edge. The theoretical model is confirmed by comparing the theoretical prediction of the edgeforce and sound pressure level with available experimental data.

Ergonomic Design of Warning Sounds Used in Cars (차량 내 경고음의 인간공학적 설계에 관한 연구)

  • Choi, Kwang-I;Lee, Han-Na;Choe, Jae-Ho;Jung, Eui-S.
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.35 no.1
    • /
    • pp.101-108
    • /
    • 2009
  • This study aims to design ergonomic warning sound that is not confusing and enhancing preference. Four factors of the warning sound represented as interval, chord, reverberation and pitch were selected as independent variables. And, perceived urgency, perceived criticality, degree of confusion and user preference are measured as dependent variables. An experiment was conducted in silent lab environment. Warning sounds were given in 90dB constantly to subjects through stereo speakers. A statistical analysis revealed that interval was significant for perceived urgency; also interval and chord were both effective for perceived criticality. Pitch, interval, chord and the interaction between pitch and chord were effective in degree of confusion, so were reverberation, the interaction between reverberation and pitch and the interaction between reverberation and chord for preference. This study characterized the situation under which warning sounds are required into three types in terms of urgency and criticality; and found the right warning sound that the subjects perceived to best represent the situation through the validation study. These findings are expected to help the designer choose the right warning sound according to the situational contexts in which such warning sounds are implemented.

Temporal and Spatial Variability of Sound Propagation Characteristics in the Northern East China Sea (동중국해 북부해역에서 음파전달 특성의 시공간적 변동성)

  • Park, Kyeongju;Chu, Peter Cheng
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.2
    • /
    • pp.201-211
    • /
    • 2015
  • Acoustic propagation in shallow water with changing environments is a major concern of navy. Temporal and spatial variability of acoustic propagation in the northern East China Sea (ECS) is studied, using the 11 years hydrographic data and the Bellhop acoustic model. Acoustic propagation in the northern ECS is highly variable due to extensive interaction of various ocean currents and boundaries. Seasonal variations of transmission loss (TL) with various source depths are highly affected by sharp gradient of sound speed and bottoms interaction. Especially, various bottom sediment types lead to severely degrading a waterborne propagation with bottom loss. In particular, the highly increased TL near the ocean front depends on the source position, and the direction of sound propagation.