• Title/Summary/Keyword: Sound Identification

Search Result 236, Processing Time 0.028 seconds

Source Identification in an Interior Sound Field (실내 공간에서의 음원 탐지 방법)

  • 김양한;최영철
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.7
    • /
    • pp.520-526
    • /
    • 2002
  • Identification of noose sources, their locations and strengths, has been taken great attention. The methods that can identify noise sources normally assume that noise sources are located in a free field. However, the sound in a reverberant field consists of that coming directly from the source plus sound reflected or scattered by the walls or objects in the field. In contrast to the exterior sound field. reflections are added to sound field. Therefore, we haute to consider the reverberation effect on the source identification method. The main objective of this paper is to identify noise source in the reverberant field. At fist, we try to identify noise sources in a rigid wall emc;psire using the beamforming method. In many cases of practical interest, the wall has admittance so that random reflections occur in an enclosure. In this paper, we assumed the complex reverberant field in the enclosure to be the sum of plane caves with random Incidence and magnitude. Then we try to explain effects of reverberant field at interior source identification.

Source Identification in an Interior Sound Field (반사파가 존재하는 실내 공간에서의 음원 탐지 방법)

  • 최영철;김양한
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.1203-1209
    • /
    • 2001
  • Identification of noise sources, their locations and strengths, have been taken great attention. The method that can identify noise sources normally assumes that noise sources are located at a free field. However, the sound in a reverberant field consists of that coming directly from the source plus sound reflected or scattered by the walls or objects in the field. In contrast to the exterior sound field, reflections are added to sound field. Therefore, we have to consider the reverberation effect on the source identification method. The main objective of this paper is to identify noise source in the reverberant field. At fist, we try to identify noise sources in a rigid wall enclosure using the spherical beamforming method. In many case of practical interest, the wall has an admittance so that complex reflection process occurred. In this paper, we assumed the complex reverberant field in the enclosure to be the sum of plane waves with random incidence and magnitude. Then the effects of reverberant field at interior source identification have been studied theoretically as well as experimentally

  • PDF

A Study on Noise Identification of Compressor Based on Two Dimensional Complex Sound Intensity (Two Dimensional Complex Sound Intensity를 이용한 압축기 소음원 규명에 관한 연구)

  • 안병하;김영수
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.1
    • /
    • pp.83-92
    • /
    • 2000
  • Sound intensity method is well known as a visualization technique of sound field or sound propagation in noise control. Sound intensity or energy flux is a vector quantity which describes the amount and the direction of net flow of acoustic energy at a given position. Especially two dimensional sound intensity method is very useful in evaluating periodic characteristics and acoustic propagation mode of noise source. In this paper, we have studied the noise source Identification, acoustic sound field analysis, and characteristics of noise source of rotary compressor and scroll compressor for air conditioner using complex sound intensity method. Also we proposed a now method of time domain analysis which is used in evaluating of position of noise source in rotary and scroll compressor in this paper This paper presents the advantage, simplicity and economical efficiency of this method by analysing the characteristics of noise source with two dimensional complex sound intensity simultaneously.

  • PDF

A cable tension identification technology using percussion sound

  • Wang, Guowei;Lu, Wensheng;Yuan, Cheng;Kong, Qingzhao
    • Smart Structures and Systems
    • /
    • v.29 no.3
    • /
    • pp.475-484
    • /
    • 2022
  • The loss of cable tension for civil infrastructure reduces structural bearing capacity and causes harmful deformation of structures. Currently, most of the structural health monitoring (SHM) approaches for cables rely on contact transducers. This paper proposes a cable tension identification technology using percussion sound, which provides a fast determination of steel cable tension without physical contact between cables and sensors. Notably, inspired by the concept of tensioning strings for piano tuning, this proposed technology predicts cable tension value by deep learning assisted classification of "percussion" sound from tapping a steel cable. To simulate the non-linear mapping of human ears to sound and to better quantify the minor changes in the high-frequency bands of the sound spectrum generated by percussions, Mel-frequency cepstral coefficients (MFCCs) were extracted as acoustic features to train the deep learning network. A convolutional neural network (CNN) with four convolutional layers and two global pooling layers was employed to identify the cable tension in a certain designed range. Moreover, theoretical and finite element methods (FEM) were conducted to prove the feasibility of the proposed technology. Finally, the identification performance of the proposed technology was experimentally investigated. Overall, results show that the proposed percussion-based technology has great potentials for estimating cable tension for in-situ structural safety assessment.

Application of Sound Intensity Camera for the Noise Source Analysis (소음원 규명을 위한 음향 인텐시티 카메라 응용)

  • Lee, Chang-Myung;Bae, Young-Wook
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.229-230
    • /
    • 2009
  • A method is suggested for the noise source identification using the sound intensity method. The suggested method does not need to install the grid using wire or thread during the sound intensity measurement for the noise source identification. It utilizes a camera to show the grid on the screen not installing the real grid for the sound intensity method.

  • PDF

Development and Application of Measuring Method of Instantaneous Intensity (순시 인텐시티 측정 기법의 개발 및 응용)

  • 이장우;김영종;안병하;이운섭
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.560-563
    • /
    • 1997
  • Sound intensity method is well known as a visualization technique of sound field and sound propagation in noise control. Sound intensity is a vector quantity that describes the magnitude and the direction of net flow of acoustic energy at a given position. The current measuring method is expensive and difficult to identify the noise source exactly. In this paper, we have studied the noise source identification and the characteristics of noise source of rotary compressor for air conditioner using complex sound intensity method. The new method for instantaneous sound intensity is also proposed and it is useful for transient state and steady state. The criteria of these states select auto correlation coefficient. The advantage, simplicity and economic attribution of this method are verified by analyzing the characteristics of noise source with instantaneous sound intensity compared to mean sound intensity.

  • PDF

Development and Application of Measuring Method for Instantaneous Intensity (순시 인텐시티 측정 기법의 개발 및 응용)

  • 이장우;안병하
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.960-963
    • /
    • 2003
  • Sound intensity method is well known as a visualization technique of sound field and sound propagation in noise control. Sound intensity is a vector quantity that describes the magnitude and the direction of net flow of acoustic energy at a given position. The current measuring method is expensive and difficult to identify the noise source exactly. In this paper, we have studied the noise source identification and the characteristics of noise source of rotary compressor for air conditioner using complex sound intensity method. The new method for instantaneous sound intensity is also proposed and it is useful for transient state and steady state. The criteria of these state, select auto correlation coefficient. The advantage, simplicity and economic attribution of this method are verified by analyzing the characteristics of noise source with instantaneous sound intensity compared to mean sound intensity.

  • PDF

Noise Characteristics of Rapier Loom by Noise Source Analysis (소음원 분석에 의한 직기 구조물의 소음 특성)

  • Na, Hae-Joong;Chun, Du-Hwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.254-257
    • /
    • 2005
  • Locations and emission characteristics of noise source of rapier loom are important factors greatly. So, noise characteristics of rapier loom were investigated by the noise source identification as a part of experimental methods in this study. To identify the noise sources of the rapier loom sound intensity was measured under machine operation. In addition, frequency spectra of the sound at operator position was measured along with sound intensity to help identify the noise characteristics of the rapier loom. The results indicate that the sound power level occurs along the rapier loom.

  • PDF

Development of High-Accuracy Automatic Identification Algorithm for First and Second Heart Sounds Using Vascular Transit Time (혈관 통과 시간을 활용한 고정확도 제 1심음 및 제 2심음 자동식별 알고리즘 개발)

  • Lee, Soo Min;Wei, Qun;Park, Hee Joon
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.11
    • /
    • pp.1500-1507
    • /
    • 2021
  • Identification and analysis of the first and second heart sounds(S1, S2) is the easiest way for cardiovascular disease prevention and early diagnosis. However, accurate identification is difficult because the heart sound includes organ movement, blood vortex, user experience, and noise influenced by subjective judgment. Therefore, an algorithm to automatically identify the S1 and S2 heart sounds based on blood vessel transit time(VTT) is presented in this paper. According to the experimental results of comparing the algorithm developed for S1 and S2 heart sound analysis with the conventional Shannon energy algorithm in 10 volunteers, it has been proven that the proposed algorithm can automatically identify S1 and S2 heart sounds with higher accuracy than existing algorithms.

The Development and Application of Sound Quality Index for the Improving Sound Quality to Road Vehicle Power Window System (차량 윈도우 리프트 음질 향상을 위한 음질 지수 제작 및 개선에의 응용)

  • Kim, Seong-Hyeon;Park, Dong-Chul;Jo, Hyeon-Ho;Seong, Won-Chan;Kang, Yeon-June
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.10a
    • /
    • pp.525-530
    • /
    • 2013
  • With the increasing the importance of emotional quality of vehicle, the sound quality of systems with electric motor components has become increasingly important. Electric motors are used for windows, seats, sun roof, mirrors, steering columns, windshield wiper, climate control blowers, etc. In this paper, a study was conducted to identify sound quality factors that contribute to customer's satisfaction and preference of the window lift system. Jury test for subjective evaluation was carried out and sound quality index was developed. Averaged sound pressure level and sharpness were significant factors when glass moves down. Also, maximum loudness at stop section and averaged loudness were significant factor when glass moves up. Noise source identification was carried out for the reduced the loudness and sharpness during glass transferred section and impulsive noise at stop section, Using the source identification result, several improvement points were applied. And finally, the degree of sound quality improvement was judged using sound quality index.

  • PDF