• Title/Summary/Keyword: Sound Grain

Search Result 70, Processing Time 0.02 seconds

Theory of Acoustic Quanta and its Application on Sound Design (음향 양자 이론의 사운드 디자인적 응용)

  • Koo, Jahwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.9
    • /
    • pp.420-426
    • /
    • 2018
  • Acoustic Quanta, which British Physicist Dennis Gabor created, is the theoretical background for granular synthesis and has influenced many computer music artists and sound designers. Acoustic Quanta is a very short sound burst, lasting only 1 to 100 ms. Granular synthesis is a sound synthesis technique which slices original sound into sound grains and re-combines them into a new acoustic event. Concept of sound grain is borrowed from the acoustic quanta. Granular Synthesis can make very unique sound, so that it can be useful in many ways, especially in sound design. This paper presents concept of acoustic quanta and granular synthesis. It then discusses making a synthesizer as an implementation of synchronous granular synthesis and its applications on sound design. As a result, the duration of acoustic quanta should range between 0.239 and 33.367 ms, in consideration of audible frequencies, which is different from the original concept of the acoustic quanta.

Chaff-outlet Grain Loss of Head-feed Combine -Development of a Monitor for Detecting Chaff-outlet Grain Loss of Head-feed Combine- (자탈형(自脱型) 콤바인의 배진손실(排塵損失)에 관(關)한 연구(硏究)(I) -자탈형(自脱型) 콤바인의 배진손실(排塵損失) 모니터 개발-)

  • Chung, C.J.;Choe, J.S.;Choi, Y.S.
    • Journal of Biosystems Engineering
    • /
    • v.14 no.4
    • /
    • pp.251-261
    • /
    • 1989
  • The amount of grain loss incurred during harvesting operation through the chaff-outlet of combine may not be negligible. To minimize this grain loss and optimize condition of combining, it may be necessary that the amount of chaff-outlet loss dependent on varying crop condition is to be estimated as exactly as possible. This study was thus intended to develop the monitor that could indicate the amount of grain loss occurred through the chaff-outlet of combine during harvesting operation. The function of this monitor is to measure at the sounding board the impact sound of paddy kernels which could be distinguished from those of other threshing products through chaff-outlet, and from vibration or noise created by the combine engine and other moving parts. To develop such monitor, the frequency distributions of each sound generated by the impact of grain and chaff, the sound generated by the impact of the mixture of grain and chaff, and vibration or noise created by the combine engine and other moving parts were investigated experimentally. From the results of frequency analyses, the trainsducer adequate for the monitering system was selected and sounding board was constructed. The grain loss monitor thus obtained was tested by attaching the sounding board to the chaff-outlet of combine.

  • PDF

Chaff-outlet Grain Loss of Head-feed Combine -Changes in chaff-outlet gram loss on the variety, location of chaff-outlet loss control plate and traveling speed- (자탈형(自脱型) 콤바인의 배진손실(排塵損失)에 관(關)한 연구(硏究)(II) -품종(品種), 배진조절판(排塵調節板)의 위치, 작업속도(作業速度)가 배진손실량(排塵損失量)에 미치는 영향-)

  • Chung, C.J.;Choe, J.S.;Choi, Y.S.;Chung, S.I.
    • Journal of Biosystems Engineering
    • /
    • v.15 no.4
    • /
    • pp.310-318
    • /
    • 1990
  • The amount of grain loss incurred during harvesting operation through the chaff-outlet of combine may not be negligible. To minimize this grain loss and optimize condition of combining, it may be necessary that the amout of chaff-outlet loss dependent on varying crop condition is to be estimated as exactly as possible. This study was thus intended to develop the monitor that could indicate the amount of grain lost through the chaff-outlet of combine during haravesting operation, and to find out driving and operating method of combine that could reduce chaff-outlet loss. In the study(1), the frequency distributions of each sound generated by the impact of kernels and chaff, the sound generated by the impact of the mixture of kernels and chaff, and vibration or noise created by the combine engine and other moving parts were investigated experimentally. Based on the results of frequency analyses, the loss monitor was developed which could measure the impact sound of paddy kernels that could be distinguished from those of other threshing products through chaff-outlet, and from vibration or noise created by the combine engine and other moving parts. Also in this study, detecting capability of monitor was tested by comparing the amount of grain lost through chaff-outlet with the amount of grain detected by the loss monitor, and changes in chaff-outlet grain loss on the increase of traveling speed, location of chaff-outlet loss control plate and variety of paddy rice were measured using the loss monitor. The monitor developed in this study efficiently measured the amount of grain lost through the chaff-outlet of combine. It was found that the chaff-outlet grain loss ratio was affected greatly by the variety of paddy rice, the location of chaff-outlet loss control plate and traveling speed of combine.

  • PDF

The Sound Velocity and Attenuation Coefficient of the Marine Surface Seciments in the nearshore area, Korea (韓半島 沿近海底 表層堆積物에서의 音波傳達速度와 減衰係數)

  • 김성;석봉출
    • 한국해양학회지
    • /
    • v.20 no.2
    • /
    • pp.10-21
    • /
    • 1985
  • The sound velocity (compressional wave) and attenuation coefficient in the marine surface sediments in the nearshore areas off the Pohang, Pusan, Yeosu and Kunsan were investigated in terms of the geotechnical properties of the marine surface sediments in the water depth range of 10-50 meters. The marine surface sediments in the study areas are variable, that is, sand to clay. Due to the various four different study area, the sound velocities and attenuation coefficients in the surface sediment facies vary 1,44m/sec to 1,510m/sec in velocity and 0.82dB/m to 3.70dB/m in coefficient respectively. In fact, the sound velocity increases with increasing of density and mean grain sizes of the sediments, and however, with decreasing of porosith. The correlation equations between the sound velocith and geotechnical properties of mean grain size, density, and porosity were expressed as the following: Vp=1512.28406-9.16083(Mz)+0.20795(Mz)$\^$2/, Vp=1876.15527-597.50397(d)+210.48375(d)$\^$2/, Vp=1559.47217-2.09266(n)$\^$2/. where Vp is sound velocity, Mz is mean grain size, d is density, and m is porosity, respectively. However, the relationship between the attenuation and geotechnical properties were different from that of sound velocity and geotchnical properties. Furthermore, the correlation equations between attenuation coefficient and geotechnical properties were expressed as the following: a=1.85217+0.67197(Mz)-0.09035 (Mz)$\^$2/, a=48.87859+58.21721(d)-16.3.143(d)$\^$2/, a=2.06765+0.07215(n)-0.00111(n)$\^$2/, where a is attenuation coefficient. The high attenuation appeared in the silty sand through fine sand facies in sediment and k values in these facies were in the range of 0.86 to 0.89 dB/m/KHz.

Practical Field Test on the Sound Reduction Properties of Formed Concrete using Bottom Ash (바텀애쉬를 사용한 경량 기포콘크리트의 소음저감 성능에 관한 실증실험 연구)

  • Noh, Jea-Myoung;Kwon, Ki-Joo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.601-604
    • /
    • 2006
  • Recently the new inorganic sound-absorbing material manufacturing techniques have introduced. These mainly is plentifully used in the place where the noise damage becomes problem in life environment, partitioning of the apartment, the railroad and the express highway, school and the residential quarter neighboring area etc. While the sound-absorbing material has vast quantity of open pore, sound insulation material, used in the apartment and high building in order to prevent the sound between layers, has suitable quantity of closed pore. The fly ash is widely used in the cement materials and the concrete binder material. The bottom ash, however, is rarely used for the grain size is big and multiform with unburning carbon ingredient. In this paper, the practical field tests and the results on the sound reduction properties of formed concrete using bottom ash are described.

  • PDF

Sound Attenuation Coefficients and Biogenic Gas Content in the Offshore Surficial Sediments Around the Korean Peninsula (韓半島 周邊海域 海底 表層蓄積物 音波 空曠係數와 생物起源 氣滯含量)

  • 김한준;덕봉철
    • 한국해양학회지
    • /
    • v.25 no.1
    • /
    • pp.26-35
    • /
    • 1990
  • Sound velocities and attenuation coefficients of marine surface sediments were calculated from insitu acoustic experiments on 4 nearshore areas off Pohang, Pusan Yeosu, and Kunsan around the Korean Peninsula. The relationship between these values and physical properties of sediments was examined and attenuation mechanism was analysed using the estimated gas content. Sound velocities and attenuation coefficients ranging from 1470 to 1616 m/sec and 0.0565 to 0.6604 dB/kHz-m, respectively, are well related to sediment types. The attenuation coefficient is maximum in coarse silts, and the sound velocity increases with density. The gas content estimated less than 8 ppm increases with the decreasing sediment grain size. When the sediment size is greater than fine sand, sound attenuation is mostly due to friction losses, and probably negligible viscous loss remains unchanged with the varying physical properties of sediments. The maximum attenuation in coarse silts result from both friction loss and cohesion of finer sediments between the contacts of silt grains. The cohesion begins to be the dominant dissipative process with decreasing grain size from medium and fine silts.

  • PDF

Improvement of Strength in ALC using Admixtures and Grain Size (혼합재 및 입도에 따른 경량기포콘크리트의 강도특성 개선)

  • Kim, Young-Yup;Song, Hun;Lee, Jong-Kyu;Chu, Yong-Sik
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2007.11a
    • /
    • pp.79-82
    • /
    • 2007
  • Recently, the use of ALC has became increasingly popular. ALC is a unique building material. Because of its cellular nature, it is lightweight, self-insulating, sound and fireproof, as well as insect and mold resistant. Furthermore, ALC is free of VOCs and various fibers associated with wood and glass wool construction. However, ALC have high water absorption, low compressive strength and popout the origin of the low surface strength in its properties. These properties make troubles under construction such as cracking and popout. Thus, this study is to improve the fundamental strength by controls of increasing of admixtures, and grain size. Admixtures make use of metakaolin, silica fume, sodium silicate and sodium hydroxide. From the test result, the ALC using admixture have a good fundamental properties compared with plain specimen. Compressive strength, specific strength and abrasion's ratio were improved depending on increasing admixtures ratio's, and grain size.

  • PDF

Ultrasonic Characteristics of Degraded Compacted Graphite Iron from 873 to 1,273 K (873~1,273 K에서 열화된 강화흑연강(Compacted Graphite Iron, CGI)의 초음파특성)

  • Lee, Soo-Chul;Nam, Ki-Woo
    • Journal of Power System Engineering
    • /
    • v.17 no.4
    • /
    • pp.72-78
    • /
    • 2013
  • Compacted graphite iron 340 was carried out the heat treatment from 873 to 1,273 K. Compacted graphite iron 340 was evaluated relationship between the sound velocity, the attenuation coefficient and the tensile strength. The obtained results are as following. The signal strength of C scan images were weak according to increasing of heat treatment temperature and time. The amplitude of A scan and B scan was also low. This can be cause that the graphite was grown into the type of vermicular, and the many of grain boundary with ultrasound scattering were increase. The sound velocity was depend upon the heat treatment temperature and time, the attenuation coefficient had nothing to do with the temperature and time. The higher the heat treatment temperature, the tensile strength and the sound velocity were decreased. However, the tensile strength was proportional to the sound velocity. The higher tensile strength, the faster the sound velocity.

The Effects of Surface Finish and Grain Size on the Strength of Sintered SiC (소결탄화규소의 표면처리 및 비정상 성장입자가 강도에 미치는 영향)

  • 유영혁;김영욱;이준근;김종희
    • Journal of the Korean Ceramic Society
    • /
    • v.21 no.1
    • /
    • pp.27-32
    • /
    • 1984
  • During the last decade there have been many studies on the new ceramics especially engineering ceramics. Sintered silicon carbide is one of the main materials in engineering ceramics. This study shows the effects of surface treatment and microstructure especially the abnormal grain growth on the strength of sintered SiC. Surface of sintered SiC and treated with 400, 800 and 1200 grit diamond wheel. Grain growth is introduced by increasing the sintering times at 205$0^{\circ}C$. The $\beta$longrightarrow$\alpha$ transformation occurs during the sintering of $\beta$-starting materials and is often accompanied by abnormal grain growth. The overall strength distribution are estimated using the Weibull statistics. The results show that the strength of sintered SiC is limited by extrinsic surface flaws in normal-sintered specimens. And it is sound that the finer the surface finishing and the grain size the higher the strength results. But the strength of abnormal sintering specimens is limited by the abnormally-grown large tabular grains. The Weibull modulus increases with the decreasing grain size and the decreasing grit size of grinding.

  • PDF

Mechanical Properties of Friction Stir Welded Ni-Base Superalloy (마찰교반접합된 니켈기 초합금의 기계적 특성)

  • Song, Kuk-Hyun;Nakata, Kazuhiro
    • Korean Journal of Materials Research
    • /
    • v.21 no.7
    • /
    • pp.410-414
    • /
    • 2011
  • This study was carried out to evaluate the microstructures and mechanical properties of a friction stir welded Ni based alloy. Inconel 600 (single phase type) alloy was selected as an experimental material. For this material, friction stir welding (FSW) was performed at a constant tool rotation speed of 400 rpm and a welding speed of 150~200 mm/min by a FSW machine, and argon shielding gas was utilized to prevent surface oxidation of the weld material. At all conditions, sound friction stir welds without any weld defects were obtained. The electron back-scattered diffraction (EBSD) method was used to analyze the grain boundary character distributions (GBCDs) of the welds. As a result, dynamic recrystallization was observed at all conditions. In addition, grain refinement was achieved in the stir zone, gradually accelerating from 19 ${\mu}m$ in average grain size of the base material to 5.5 ${\mu}m$ (150 mm/min) and 4.1 ${\mu}m$ (200 mm/min) in the stir zone with increasing welding speed. Grain refinement also led to enhancement of the mechanical properties: the 200 mm/min friction stir welded zone showed 25% higher microhardness and 15% higher tensile strength relative to the base material.