• Title/Summary/Keyword: Sound Directivity

Search Result 129, Processing Time 0.023 seconds

The Directivity Measurement of Angle Probe by Photoelastic Visualization Method (광탄성가시화법에 의한 사각탐촉자의 지향성 평가에 관한 연구)

  • Nam, Y.H.;Date, K.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.14 no.2
    • /
    • pp.83-89
    • /
    • 1994
  • It is important for an ultrasonic testing to know the sound pressure field and the directivity of ultrasonic waves propagating in a solid. The directivity of ultrasonic wave is closely related to the sensitivity, the scanning pitch, the arrangement of angle probe, and the defect kind in ultrasonic testing. This paper describes on the directivity measurement of ultrasonic wave using ultrasonic wave visualization method. The directivity of the shear wave emitted from the angle probes were constant during propagation. The difference of directivity was existed between 2MHz and 4MHz angle probes. The centers of directivity were located backward from the incident poing and inside of the angle probe and were not changed during the wave propagation.

  • PDF

Development of Directional Digital Hearing Aid Performance Testing System (지향성 보청기 성능 검사 장치 개발)

  • Jang, Soon-Suck;Kwon, You-Jung;Lee, Je-Hyeong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.1 s.106
    • /
    • pp.81-88
    • /
    • 2006
  • The most recent trend on digital hearing aid is to increase the ratio of signal to noise by directivity or to develop noise reduction algorithm inside DSP IC chip. This paper designed, fabricated and tested a digital hearing aid directivity testing device in which a micro-mouse-like the stepping motor with a speaker rotates around an examinant. Both ears of the examinant were fixed with ITE hearing aids in order to respond to receiving sound. The experimental results were compared with those of a boundary element method program for verification. The diameter of the directivity testing device was 2 m and the micro-mouse was precisely controlled by PICBASIC micro processor.

Development of Directional Digital Hearing Aid Performance Testing System (지향성 보청기 성능 검사 장치 개발)

  • Jarng, Soon-Suck;Kwon, You-Jung;Lee, Je-Hyeon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.469-474
    • /
    • 2005
  • The most recent trend on digital hearing aid is to increase the ratio of signal to noise by directivity or to develop noise reduction algorithm inside DSP IC chip. This paper designed, fabricated and tested a digital hearing aid directivity testing device in which a micro-mouse-1ike the stepping motor with a speaker rotates around an examinant. Both ears of the examinant were fixed with ITE hearing aids in order to response to receiving sound. The experimental results were compared with a boundary element method program for verification. The diameter of the directivity testing device was 2 [m] and the micro-mouse was precisely controlled by PICBASIC micro processor.

  • PDF

Subjective Evaluation of Loudspeaker Layouts for a Large Dome (대공간 스피커 배치 방식의 주관적 평가 연구)

  • Jeong, Dae-Up;Choi, Young-Ji;Kim, Jeong-Su
    • Journal of Korean Association for Spatial Structures
    • /
    • v.10 no.3
    • /
    • pp.75-80
    • /
    • 2010
  • The present study tried to provide useful data for the acoustic design of sound amplification system with measuring and analyzing subjective preference and intelligibility by varying the number of speakers and their directivity. The results suggest that the room absorption plays a key role in subjective responses of listeners and the large sound absorption of ceiling contributes to the increase of intelligibility. Also, larger number of speakers with narrow directivity improves perceived intelligibility when speakers were installed at the lower height. However, the highest degree of intelligibility and preference were obtained when speakers were installed close enough to the sound absorptive ceiling. The highest intelligibility and preference were observed when 8 to 10 speakers with the directivity of 60 degree were used.

  • PDF

Directivity Analysis of Ultrasonic Wave Reflected from the Artificial Defect in Simulated Butt Welded Joint (가상 용접부내의 결함으로부터 반사된 초음파의 지향성 해석)

  • Nam, Young-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.15 no.2
    • /
    • pp.378-385
    • /
    • 1995
  • The ultrasonic non-destructive testing uses the directivity of the ultrasonic pulse wave which propagates in one direction. The directivity is expressed as the relationship between the propagate direction and its sound pressure. The directivity of ultrasonic wave is closely related to determination of probe arrangement, testing sensitivity, scanning pitch and defect location and characterization. The paper measured the directivity of shear wave, which reflected from artificial defect located in weld metal zone in butt welded joint similar model made of pyrex glass by using visualization method. 2 MHz and 4 MHz angle probes were used to measure the directivity of reflection wave at the artificial defect. The directivity of shear waves reflected from the defect was different according to the probe position and the shape of butt welded joint. The difference of directivity of reflection wave was existed between 2 MHz and 4 MHz angle probes. The angle of reflection wave became equal to angle of incidence as increase of the height of excess metal.

  • PDF

Numerical Simulation of Directivity for Probe and Surface Defect (탐촉자와 표면 결함에 대한 지향성의 수치 실험에 관한 연구)

  • Nam, Young-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.15 no.1
    • /
    • pp.291-298
    • /
    • 1995
  • An ultrasonic testing uses the directivity of the ultrasonic wave which propagates in one direction. The directivity is expressed as the relationship between the propagate direction and its sound pressure. This paper studied the directivity of shear waves emitted from angle probes and scattered from surface defects by using visualization method. These experimental results were compared with the theory which was based on the continuous wave. The applicability of continuous wave theory was discussed in terms of the parameter $d/{\lambda}$; where d is transducer or defect size and ${\lambda}$ is the wavelength. In the case of angle probes, the experimental results show good agreement with theoretical directivity on the principal lobe. When defect size was smaller than the wavelengths, clear directivity in the reflected wave was observed. In the case of the same ratio of defect size to wavelength, the directivity of reflected waves from the defect show almost the same directivity in spite of frequency differences. When the $d/{\lambda}$ is greater than 1.5, measured directivities almost agreed with the theoretical one.

  • PDF

Manufacturing and Sound Estimation of the Great Bell of 2018 Pyeongchang Winter Olympics (2018 평창동계올림픽 대종의 제작과 음향 평가)

  • Kim, Seockhyun;Byeon, Jun-Ho
    • Journal of Industrial Technology
    • /
    • v.38 no.1
    • /
    • pp.1-7
    • /
    • 2018
  • This paper introduces the design, casting, and sound evaluation results of the Great Bell of 2018 Pyeongchang Winter Olympics. The Olympic Bell was manufactured to announce the opening of the successful Winter Olympics in the world with a grand sound. The bell was designed to the dynamic shape to give a grand and harmonious sound in consideration of the global sports festival. In this study, the performance of the beat making the sound magnificent and the harmony of the bell sound were quantitatively evaluated using acoustical factors. Beat maps were investigated to understand the directivity of the beating sound. The purpose of the research is to present the production technique of a traditional Korean bell that has a dynamic shape and a grand and harmonious sound.

DIRECTIVE HARMONIC WAVE DETECTING SYSTEM USING LINEAR MICROPHONE ARRAY (직선배열 Microphone에 의한 음원의 방향과 주파수의 분석 System)

  • CHANG J.;ABE M.;KIM C.;KIDO K.
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.13 no.4
    • /
    • pp.145-149
    • /
    • 1980
  • Various methods have been so far proposed to find out the directions and spectra of sound waves from the sources for provisions of noise controls. The conventional methods are generally classified into three systems such as, single microphone system, moving microphone system and multi-microphone system, which composes a resultant super directivity by giving a appropriate delay and a weighting coefficient in the output of each microphone. In case of using a single microphone there is a difficulty in providing it with desirable super directivity in the low frequency range, while in case of using multi-microphone system there has been a disadvantage that the measurement of directivity could not separately be done with the spectrum analysing. And in case of the use of a moving microphone system it needs a condition that the sound source to be detected should be stationary state and in rest. However here we introduce a method that the spectral analysing and the directivity of synthesis can be separately carried out by using a linear array of many microphones, in which each output of the microphone is multiplied by appropriate weighting coefficient and all of those products are summed after passing through adequate filters. The resultant signal is then sampled with an adequate sampling frequency and taken average for processing.

  • PDF

An Experimental Study on the Propagation Characteristics of the Impulse Noise from the Exit of a Perforated Pipe (다공관 출구로부터 방사된 충격성 소음의 전파특성에 관한 실험적 연구)

  • Heo, Sung-Wook;Lee, Myeong-Ho;Lee, Dong-Hoon;Hwang, Yoon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.7 no.3
    • /
    • pp.15-21
    • /
    • 2003
  • This experimental study describes the propagation characteristics of the impulse noise emitted from the exit of a perforated pipe attached to the open end of a simple shock tube facility. The pressure amplitudes and directivities of the impulse wave propagating outside from the exit of pipe with several different configurations are measured and analyzed for the range of the incident weak shock wave Mach number between 1.02 and 1.2. In the experiments. the impulse waves are visualized by a Schlieren optical system for the purpose of understanding their propagation characteristics. The results obtained show that for the near sound field the impulse noise strongly propagates toward the pipe axis, but for the far sound field the impulse noise uniformly propagates toward the omnidirections, indicating that the directivity pattern is almost same regardless of the pipe type. For this non-directivity in the far sound field, it is shown that the perforated pipe has little performance to suppress the impulse noise.