• Title/Summary/Keyword: Sound Attenuation

Search Result 209, Processing Time 0.025 seconds

The Sound Velocity and Attenuation Coefficient of the Marine Surface Seciments in the nearshore area, Korea (韓半島 沿近海底 表層堆積物에서의 音波傳達速度와 減衰係數)

  • 김성;석봉출
    • 한국해양학회지
    • /
    • v.20 no.2
    • /
    • pp.10-21
    • /
    • 1985
  • The sound velocity (compressional wave) and attenuation coefficient in the marine surface sediments in the nearshore areas off the Pohang, Pusan, Yeosu and Kunsan were investigated in terms of the geotechnical properties of the marine surface sediments in the water depth range of 10-50 meters. The marine surface sediments in the study areas are variable, that is, sand to clay. Due to the various four different study area, the sound velocities and attenuation coefficients in the surface sediment facies vary 1,44m/sec to 1,510m/sec in velocity and 0.82dB/m to 3.70dB/m in coefficient respectively. In fact, the sound velocity increases with increasing of density and mean grain sizes of the sediments, and however, with decreasing of porosith. The correlation equations between the sound velocith and geotechnical properties of mean grain size, density, and porosity were expressed as the following: Vp=1512.28406-9.16083(Mz)+0.20795(Mz)$\^$2/, Vp=1876.15527-597.50397(d)+210.48375(d)$\^$2/, Vp=1559.47217-2.09266(n)$\^$2/. where Vp is sound velocity, Mz is mean grain size, d is density, and m is porosity, respectively. However, the relationship between the attenuation and geotechnical properties were different from that of sound velocity and geotchnical properties. Furthermore, the correlation equations between attenuation coefficient and geotechnical properties were expressed as the following: a=1.85217+0.67197(Mz)-0.09035 (Mz)$\^$2/, a=48.87859+58.21721(d)-16.3.143(d)$\^$2/, a=2.06765+0.07215(n)-0.00111(n)$\^$2/, where a is attenuation coefficient. The high attenuation appeared in the silty sand through fine sand facies in sediment and k values in these facies were in the range of 0.86 to 0.89 dB/m/KHz.

Assessment of Acoustic Iterative Inverse Method for Bubble Sizing to Experimental Data

  • Choi, Bok-Kyoung;Kim, Bong-Chae;Kim, Byoung-Nam;Yoon, Suk-Wang
    • Ocean Science Journal
    • /
    • v.41 no.4
    • /
    • pp.195-199
    • /
    • 2006
  • Comparative study was carried out for an acoustic iterative inverse method to estimate bubble size distributions in water. Conventional bubble sizing methods consider only sound attenuation for sizing. Choi and Yoon [IEEE, 26(1), 125-130 (2001)] reported an acoustic iterative inverse method, which extracts the sound speed component from the measured sound attenuation. It can more accurately estimate the bubble size distributions in water than do the conventional methods. The estimation results of acoustic iterative inverse method were compared with other experimental data. The experimental data show good agreement with the estimation from the acoustic iterative inverse method. This iterative technique can be utilized for bubble sizing in the ocean.

A Study on the Characteristics of Railroad Traffic Noise (철도교통소음의 특성에 관한연구)

  • Choi, Hyung-Il;Park, Sang-Ill;Yeom, Dong-Ick
    • Journal of Environmental Science International
    • /
    • v.16 no.7
    • /
    • pp.771-778
    • /
    • 2007
  • This study has been conducted to achieve the following objectives: First, in order to understand the horizontal propagation and attenuation characteristics for the railroad traffic noise, we selected areas within 100 meters away from the railroad and then selected Saemaul-ho and Mugoongwha-ho as the subjects for our experiment. In this way, we analyzed the horizontal propagation and attenuation characteristics for the traffic noise occurring in diversified areas. Second, in order to understand the vertical propagation and attenuation characteristics for the railroad traffic noise, we measured and analyzed the distributional characteristics of vertical sound pressure levels on each floor of multi-storied apartment buildings according to changes of traffic load and types, and the existence or nonexistence of soundproof walls. For the case of the railroad traffic noise, we also selected Samaul-ho and Mugoongwha-ho as the subjects for our experiment, and we measured and analyzed the different noise levels on each floor of multi-storied apartment buildings from the soundproof wall. The results of Horizontal propagation and attenuation characteristics for the railroad traffic noise are as follows: In cases of the flat land, cutting land, and bridge area, as distance increases, the sound pressure level steadily decreases. The sound pressure level for the bridge area is higher than that of the flat land with a measurement of $5.5{\sim}10.2\;dB(A)$. Vertical propagation and attenuation characteristics for the railroad traffic noise are as follows: The amount of sound pressure level decrease is $14.2{\sim}14.8\;dB(A)$ for Samaul-ho and $13.5{\sim}14.3\;dB(A)$ for Mugoongwha-ho when measuring the vertical sound pressure levels at heights lower than 4.5 m, which indicates a fairly large decrease. At 6 m, the amount of decrease is 8.6 dB(A) for Samaul-ho and 8.2 dB(A) for Mugoongwha-ho, which indicates a small decrease.

Noise Attenuation by Vegetation (식생에 의한 소음감쇄 효과)

  • 박달곤;김용식
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.23 no.2
    • /
    • pp.205-212
    • /
    • 1995
  • The effects of noise attenuation among bare land, grassland, dominated broad-leaved (Quercus acutissima Carruth) and dominated coniferous forest (Pignus rigid Mill.) were studied For this study, the field experiment was carried out at playground, orchard grass, and school forest in Yeungnam University, Kyongsan. Sound levels of 500, 630, 800, 1,000, 1,250, 1,600, 2,000, 2,500 and 3,150 Hz, respectively, were projected into the vegetation, and the transmitted levels of sound were recorded at the distances of 1, 5, 10, 20, 30 and 50m, respectively, from the sound source. Both dominated coniferous forest (Pignus riged Mill.) and broad-leaved forest (Quercus acutissima Carruth ) are the more effective than grassland in the rates of attenuation. It is expected that dominated coniferous forest will be the more effective to attenuate sound love교 than dominated broad-leaved forest. In the low frequencies such as 500 and 630 Hz, grassland showed the more effective to attenuate sound levels than forests, while in the high frequency such as 3,150 Hz, the forests are the more effective to attenuate sound levels than grassland The present results suggested that it is the more effective to establish the tree belt for a sound barrier, with dominated coniferous tree species in the upper layer and herbaceous vegetation in the lower layer.

  • PDF

A Study on the Sound Resonating Barrier (음향공명 방음벽 연구)

  • Lee, Jun-Shin;Kim, Tae-Ryong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.6
    • /
    • pp.413-419
    • /
    • 2002
  • Noise barriers are widely used to reduce the sound level propagating from highways, railways or factories to residential areas. The reduced noise level at a receiver point is then determined by the diffracted waves around the edge of the barrier as well as by the transmitted waves through the barrier. 1'or proper usage, many studies either theoretical or experimental have been made with the objective of precisely Predicting the acoustic field and improving the noise attenuating properties of barriers. In this study. a simple scattering model. a line acoustic source scattered by an infinite cylinder, is introduced to simply Investigate the sound attenuation efficiency of a sound-resonating barrier. From this model study, it is observed that the sound-resonating harrier can be used as a good sound-shielding element especially for the pure-tone noise generated from the transformer. Large sound-attenuation is achieved by applying the sound-resonating barrier to the large transformers in a substation.

A Study on the Sound Resonating Barrier (음향공명 방음벽 연구)

  • 이준신;김태룡;손석만;박동수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.659-664
    • /
    • 2001
  • Noise barriers are widely used to reduce the sound level propagating from highways, railways or factories to residential areas. The reduced noise level at a receiver point is then determined by the diffracted waves around the edge of the barrier as well as by the transmitted waves through the barrier. For proper usage, many studies either theoretical or experimental have been made with the objective of precisely predicting the acoustic field and improving the noise attenuating properties of barriers. In this study, a simple scattering model, a line acoustic source scattered by an infinite cylinder, is introduced to simply investigate the sound attenuation efficiency of a sound-resonating barrier. From this model study, it is observed that the sound-resonating barrier can be used as a good sound-shielding element especially for the pure-tone noise generated from the transformer. Large sound-attenuation is achieved by applying the sound-resonating barrier to the large transformers in a substation.

  • PDF

Ultrasonic Characteristics of Degraded Compacted Graphite Iron from 873 to 1,273 K (873~1,273 K에서 열화된 강화흑연강(Compacted Graphite Iron, CGI)의 초음파특성)

  • Lee, Soo-Chul;Nam, Ki-Woo
    • Journal of Power System Engineering
    • /
    • v.17 no.4
    • /
    • pp.72-78
    • /
    • 2013
  • Compacted graphite iron 340 was carried out the heat treatment from 873 to 1,273 K. Compacted graphite iron 340 was evaluated relationship between the sound velocity, the attenuation coefficient and the tensile strength. The obtained results are as following. The signal strength of C scan images were weak according to increasing of heat treatment temperature and time. The amplitude of A scan and B scan was also low. This can be cause that the graphite was grown into the type of vermicular, and the many of grain boundary with ultrasound scattering were increase. The sound velocity was depend upon the heat treatment temperature and time, the attenuation coefficient had nothing to do with the temperature and time. The higher the heat treatment temperature, the tensile strength and the sound velocity were decreased. However, the tensile strength was proportional to the sound velocity. The higher tensile strength, the faster the sound velocity.

Variations of Speed of Sound and Attenuation Coefficient with Porosity and Structure in Bone Mimics (뼈 모사체에서 다공율 및 구조에 대한 음속 및 감쇠계수의 변화)

  • Kim, Seong-Il;Choi, Min-Joo;Lee, Kang-Il
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.6
    • /
    • pp.388-394
    • /
    • 2010
  • In the present study, polyacetal bone mimics with circular cylindrical pores were used to investigate variations of speed of sound and attenuation coefficient with porosity and microarchitecture in bone. The speed of sound and attenuation coefficient of the 6 bone mimics with porosities from 0 % to 65.9 % were measured by a through-transmission method in water, using a pair of broadband, unfocused transducers with a diameter of 12.7 mm and a center frequency of 1.0 MHz. Independently of the structural properties of the bone mimics, the speed of sound decreased almost linearly with the increasing porosity. The attenuation coefficient measured at 1.0 MHz exhibited linear or nonlinear correlations with the porosity, depending on the structural properties of the bone mimics. These results are consistent with those previously published by other researchers using bone samples and mimics, and advances our understanding of the relationships of the ultrasonic parameters for the diagnosis of osteoporosis with the bone density and microarchitecture in human bones.

An attenuation effect of noise according to the direction of secondary sound source in duct ANC system (Duct ANC 시스템에서 2차음원 방향별 소음감소효과)

  • Lee, Hyung-Seok;Lee, Eung-Suk
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.497-502
    • /
    • 2008
  • In this paper, we studied on an attenuation effect of automobile exhaust noise according to the direction of secondary sound source in duct ANC system. Automobile exhaust noise was recorded at 800rpm. 3500rpm and 5000rpm of a diesel engine. Directions of loudspeaker(second sound source) can be exchanged to $30^{\circ}$, $90^{\circ}$ and $150^{\circ}$ against the primary noise flow by acrylic ducts to be made for experimentation. DSP board with TMS320C6416 chip of Texas Instrument Co used to control adaptive ANC system. This ANC system is based on the single-channel FxLMS algorithm. In experiment result, when the loud speaker direction was $150^{\circ}$, the attenuation effect showed largely. In case of $90^{\circ}$ duct, the noise was a little increased. In case of $30^{\circ}$ duct, the noise was a little increased or decreased according to the frequency range and the sound pressure(dB) of exhaust noise to comply with engine rpm.

  • PDF

Measurements of Acoustic Properties of Tofu and Acorn Curd as Potential Tissue-mimicking Materials

  • Li Ying;Guntur S.R.Anjaneya Reddy;Choi Min Joo;Paeng Dong-Guk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.4E
    • /
    • pp.132-138
    • /
    • 2005
  • The purpose of this study is to measure the acoustic properties of Tofu and Acorn Curd (Dotori Muk), which are possibly used as tissue mimicking materials (TMMs). Due to its availability and low cost, Tofu was suggested as a TMM by several researchers who measured only sound speed and attenuation. The acoustic properties of Tofu and Muk including the backscattering coefficient were measured in this paper. Sound speed was measured by the time shift in a pulse echo setup. Attenuation coefficients and backscattering coefficients were measured by a broadband method using both 5 MHz and 10 MHz transducers in the frequency domain. The measured acoustic properties of both Tofu and Muk are observed to be similar to those of biological tissues such as beef liver or beef heart.