• Title/Summary/Keyword: Sound Absorption Panel

Search Result 64, Processing Time 0.04 seconds

Acoustic Characteristics of a Helmholtz Resonator with Built-In Sound Absorption Panel (흡음판이 내장된 헬름홀츠 공명기의 흡음특성)

  • Yang, Yoon-Sang;Baek, Du-San;Lee, Dong-Hoon;Park, Choon-keun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.121-124
    • /
    • 2014
  • Many of research on noise reduction techniques have been progressed for the improvement of noise environment in subway train. There are many way to noise reduction techniques in the tunnel, but it has been reported as an alternative to attach sound absorption material on tunnel wall. For this reason sound absorption material has been studied for application of tunnel. The objective of this study is to investigate design parameters on a Helmholtz resonator with built-in sound absorption panel for the reduction of the tunnel noise in the subway. Sound absorption panel composed of the perforated panel with sub-millimeter holes and the airspace backed a rigid wall or between panels. The experiment is performed through the change of number of perforated panel, cross sectional area and the depth of airspace of the sound absorption panel under the normal incidence sound.

  • PDF

A study on the improvement of sound absorption coefficient of an honeycomb panel by the core resonance (코어공명을 이용한 허니콤패널의 흡음율 개선에 관한 연구)

  • Yu, Y.H.
    • Journal of Power System Engineering
    • /
    • v.12 no.4
    • /
    • pp.46-51
    • /
    • 2008
  • Honeycomb panel has a constructive advantage because it is constructed with a honeycomb core, so it has relatively higher strength ratio to weight. Therefore honeycomb panel has been used as the light weight panels in the high-speed railway technology and high-speed ship like as cruise yachts. Also it has been used in the aircraft and aerospace industry as a structural panel because light weight structure is indispensible in that field of industry. Recently, the honeycomb panel is embossed in the viewpoints of high oil prices as the lightweight panel of the transport machine, however the sound insulation capacity of the honeycomb panel is poorer than those of uniform and another sandwich panels. In this paper a method to improving the sound absorption coefficient of a honeycomb panel Is studied by using the Helmholtz resonator. The sound absorption coefficients for some kinds of honeycomb cores are demonstrated by the normal incident absorption coefficient method.

  • PDF

An acoustical characteristics of sound proof panel for high speed train (고속전철용 방음패널의 음향특성 평가)

  • 서재갑;정성수;서상준;조문재;나희승;양신추
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.145-149
    • /
    • 2001
  • In this study, an acoustical characteristics of sound proof panel for high speed train was performed. A sound absorption coefficient and transmission loss of sound proof panels for high speed train were tested in reverberation chambers and compared those of ordinary sound proof panel. The effect of noise barrier was simulated by using ray noise program with measured sound absorption coefficient for high speed train case and for ordinary case.

  • PDF

An Experimental Study on the Grazing Incidence Sound Absorption of a Perforated Panel System (다공판 시스템의 접선입사 흡음성능에 관한 실험적 연구)

  • Je, Hyun-Su;Yang, Soo-Young;Hong, Byung-Kuk;Song, Hwa-Young;Lee, Dong-Hoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.1052-1055
    • /
    • 2004
  • This paper introduces an experimental study on the grazing incidence sound absorptions for duct silencers filed with a glass wool and consisted of a perforated panel. The experimental results are discussed in comparison with the normal incidence sound absorption. And also the transmission loss for duct silencers are measured and compared with the sound absorption performances. From the experimental results, it is shown that the resonance frequency bandwidth on the transmission loss and sound absorption coefficient for duct silencers has a good agreement.

  • PDF

A Study on the Improvement of Acoustic Absorption of Multiple Layer Perforated Panel Systems (다중 다공판 시스템의 흡음성능 향상에 관한 연구)

  • Lee, Dong-Hoon;Seo, Seong-Won;Hong, Byung-Kuk;Song, Hwa-Young
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.5 s.98
    • /
    • pp.571-577
    • /
    • 2005
  • The acoustic absorption of multiple layer perforated panel systems is largely reduced at the anti-resonance frequency. In order to improve the acoustic absorption at the anti-resonance frequency, the sound absorbing materials are inserted between perforated panels. By the insertion of absorbing materials, it is found that the multiple layer perforated panel system has better acoustic absorption at the anti-resonance frequency and more broadband frequency. Besides, it is shown that the absorption coefficients from the transfer matrix method agree well with the values measured by the two-microphone impedance tube method for various combinations of perforated panels, airspaces or sound absorbing materials.

A Helmholtz Resonator Array Panel for Low Frequency Sound Absorption (저주파수 흡음을 위한 헬름홀쯔 공명기 배열형 패널)

  • Kim, Yang-Hann;Kim, SangRyul
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.8 s.101
    • /
    • pp.924-930
    • /
    • 2005
  • Sound absorptive materials have good performance in high frequency range, not at low frequencies. Therefore it has been great challenge to develop a sound absorbing structure that is good at low frequency. We propose to use a Helmholtz resonator array panel for this purpose. A Helmholtz resonator is one of noise control elements widely used in many practical applications. The resonator is a simple structure composed of a rigid-walled cavity with a neck, but it has very high performance at resonance frequency. This paper discusses the sound absorption of Helmholtz resonator array panels at normal and random incidence. First, various experimental results are introduced and studied. Secondly, we theoretically predict the absorptive characteristics of the resonator away panel. The theoretical approach is based on the Fourier analysis for a periodic absorber. We believe that this method can be used to design a panel for low frequency noise control.

Investigation of Sound Absorbing Characteristics of the Railway Noise Barrier by Changing the Configuration of the Front Perforated Panel and Absorbing Material (철도 방음벽의 전면 타공과 흡음재에 의한 흡음성능 고찰)

  • Kim, Kwanju;Kim, Sanghun;Park, Jinkyu
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.10a
    • /
    • pp.575-580
    • /
    • 2013
  • This study focused on the identification of sound characteristics according to the configuration of sound absorption material and perforated panel dimensions. Noise barriers consist of front perforated panel, sound absorption material and back plate. Noise barriers' acoustic performance should be required to meet the NRC of 0.7. The absorbing performance of the noise barrier relies on the opening ratio of perforated panel and the efficiency of the absorbing material. This study try to find out the possibilities of applications to railway usage.

  • PDF

Sound Absorbing Characteristics According to Interior Configuration of Noise Barrier (흡음형 방음벽의 내부 구성에 따른 흡음특성)

  • 박진규;김상헌;김관주;박희준
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.387-392
    • /
    • 2003
  • This study is put a focus on the identification of sound characteristics according to the interior configuration of sound absorption material and air gap. Noise barrier is general consists of front perforated panel, air layer, sound absorption material, air gap and back plate. Noise barrier is required to the NRC value of 0.7. The absorbing performance of the noise barrier relies on the opening ratio of the perforated panel and the efficiency of the absorbing material. This study has observed the effect of opening ratio and hole size, the increase of sound absorbing performance by the configurations of sound absorption material and air gap. New designed noise barrier is achieved the acoustical performance of 0.87 the measurement in a reveration room.

  • PDF

Design of a Micro-perforated Panel Absorber at High Incident Sound Pressure (높은 입사 음압에서의 미세 천공판을 이용한 흡음 기구의 설계)

  • Park, Soon-Hong;Seo, Sang-Hyun;Jang, Young-Soon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.10
    • /
    • pp.983-990
    • /
    • 2010
  • Reduction of acoustic loads of space launch vehicles can be achieved by acoustic absorbers satisfying strict cleanness requirements. This limited the use of general porous materials and requires non-porous sound absorbers. Micro-perforated panel absorbers(MPPA) is one of promising sound absorbers satisfying the cleanness requirement for launch vehicles. However, its applicability was limited to low sound pressure levels according to the acoustic impedance model of micro-perforated panels. In this paper the applicability of micro-perforated panel absorbers at high incident sound pressure was investigated in experimental ways. The absorption characteristics of a micro-perforated panel absorber was simulated according to its design variables, e.g., minute hole diameters and aperture ratios. It was shown that optimal design can be readily done by using proposed design charts. Experiments were conducted to measure acoustic properties of the designed micro-perforated panel absorbers. The results showed that acoustic resistance increases rapidly as incident sound pressure level does but change of acoustic reactance can be neglected in a practical point of view. This caused the decrease of peak value of absorption coefficient at high incident sound pressure level, but the amount of reduction can be accepted in practice. The major advantage of the micro-perforated panel absorber(wide absorption bandwidth) was still kept at high sound pressure level.

Effect of Resonator Arrangement on Sound Absorption of Helmholtz Resonator Array Panel (공명기 분포에 따른 공명기 배열형 패널의 흡음특성 고찰)

  • 김상렬;김양한
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.288-291
    • /
    • 2004
  • The Helmholtz resonator is one of noise control elements widely used in many practical applications. However the resonator array system, which is sometimes used to reflect or absorb low frequency noise, has not been well studied. We have investigated the difference in sound absorption of the Helmholtz resonator array panel caused by change in the resonator arrangement. Experiments and numerical calculations for various Helmholtz resonator array panels are carried out and the results are compared each other. The comparisons show that the acoustic coupling between closely located resonators affects the performance of the sound absorbing system. Particularly, the distance between resonators has a significant effect on the broadness of the sound absorption coefficient.

  • PDF