• 제목/요약/키워드: Sound Absorbent Material

검색결과 16건 처리시간 0.025초

재생 자원의 흡음특성에 관한 연구 -폐지와 담배필터를 중심으로- (Study on the Sound Absorbing Characteristics of Recycled Materials -Based on used Paper and Cigarette Filters-)

  • 최창하;조해용;이주민
    • 한국환경과학회지
    • /
    • 제10권1호
    • /
    • pp.9-12
    • /
    • 2001
  • In this study, development of new sound absorbent which is safety, economical and efficient with using recycled materials is tried for substitution of commercial sound absorbent. The sound absorbents, used in this investigation, were made of used paper or filters of cigarette butts. With the variation of the material densities, sound absorptions of materials were measured. The impedance tube method is used for measuring sound absorption coefficient of the new sound absorbent materials. The measured frequency range was 250Hz to 4000Hz in 1/3 octave band. The sound absorption coefficient of the commercial materials and that of the materials synthesized in the our laboratory show almost same value.

  • PDF

흡음형 방음판넬의 음향특성 (The Acoustical Characteristics of an Absorptive Panel)

  • 황철호;정성수;이우섭;김용태
    • 대한환경공학회지
    • /
    • 제22권10호
    • /
    • pp.1843-1850
    • /
    • 2000
  • 다공판과 흡음재, 그리고 공기총으로 구생되는 방음판에 대한 흡음계수를 측정하고 이론값과 비교하였다. 방음판은 세 가지 기본적인 조합물(다공판 + 공기층 + 흡용재, 다공판 + 흡음재, 다공판 + 흡음재 + 공기층)으로 구성하였다. 실험결과 저주파수 영역의 흡음력은 다공판과 공기층으로 구성되는 공명형 구조물의 공명 흡음에, 그리고 고주파수 영역은 다공판의 기공률에 크게 영향을 받음을 알 수 있었다.

  • PDF

흡음재 내부의 음향전파가 고려된 2차원 흡음형 소음기의 음향성능 예측 (Prediction of the acoustic performance of the two-dimensional dissipative silencer with the propagation of sound in the absorbent)

  • 김회전;이정권
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.870-873
    • /
    • 2003
  • This research is about the sound attenuation in the duct with lining sound absorbing material in it. Many previous researches assumed the property of lining material as locally-reacting. As the thickness of lining material thickens or the upper limit of the interested frequency range goes higher, there is a growing tendency for the experiment results to deviate from the theoretical results based on the locally reacting assumption. In this paper, the acoustic performance of the two-dimensional dissipative silencer with the propagation of sound in the absorbent was derived theoretically and calculated. The effect of increase of sound absorbing material is also considered. These results are compared from the previous results with using the locally-reacting property of sound absorbing material.

  • PDF

흡음 석고보드 천장재에 의한 저주파 중량 바닥충격음의 저감 효과 (Effects of sound absorbent gypsum board in the ceiling on low-frequency heavyweight floor impact sound)

  • 송한솔;류종관
    • 한국음향학회지
    • /
    • 제37권5호
    • /
    • pp.323-330
    • /
    • 2018
  • 본 연구에서는 흡음 석고보드 천장재에 의한 바닥충격음 저감 효과를 조사하기 위해 잔향실에서의 흡음률 측정과 바닥충격음 성능평가 시험동에서의 바닥충격음 성능평가를 실시하였다. 먼저, 흡음률 측정은 흡음 석고보드, 흡음석고보드+글라스울, 흡음 석고보드 이중 천장재(흡음 석고보드+글라스울+흡음 석고보드)를 대상으로 실시하였다. 측정결과, 흡음 석고보드의 경우 200 Hz과 630 Hz 대역에서 약 0.1~0.5의 흡음률을 나타냈으며, 글라스울을 추가하였을 때 전체 측정 주파수대역(50 Hz ~ 630 Hz)에서 흡음률이 상승하였다. 흡음 석고보드를 추가 설치하였을 때 250 Hz 대역까지 흡음률이 크게 상승하였으나, 315 Hz 이상 대역에서는 흡음률이 감소하였다. 상기 3개의 흡음석고보드 및 일반 석고보드 천장재와 맨슬래브(천장 무) 대상으로 바닥충격음 차단 실험동에서 바닥충격음 차단성능 측정을 실시하였다. 측정결과, 흡음석고보드+글래스울과 흡음석고 보드 이중 천장재의 일반 석고보드 대비 중량충격음의 저감량은 단일평가지수 기준으로 3 dB ~ 4 dB인 것으로 나타났다. 맨슬래브 대비 중량충격음의 저감은 주로 125 Hz ~ 500 Hz 대역에서 발생하였으며 250 Hz 대역에서 최대의 저감량을 나타냈다.

Novel Recycling Technology of Ultra-fine Fibrous Materials

  • Kim, Seong-Hun;Oh, Kyung-Wha;Lee, Shin-Kyung
    • 한국고분자학회:학술대회논문집
    • /
    • 한국고분자학회 2006년도 IUPAC International Symposium on Advanced Polymers for Emerging Technologies
    • /
    • pp.209-209
    • /
    • 2006
  • Ultra-fine fibers are spun by expensive fiber spinning technology using special spinnerets. Ultra-fine fibrous materials have attracted considerable attentions because of their potential applications as high performance wiping cloths, water absorbent sound proofing materials and moisture transfer sporting good. However, production expense of ultra-fine fibers is 5 to 7 times higher than general textile materials. The objective of this research is to develop cost-effective recycling process to produce multi-functional ultra-fine fibrous material in terms of the development of garnetting and carding machines for ultra-fine fibrous material waste and scrap. The efficiency of sound absorption for the recycled polyester nonwoven increased with decreasing length and thickness of component fibers, which was attributed to the reduction of air permeability. It is expected that high value and cost-effective textile products are developed using ultra-fine fibrous wastes and that sound proofing material and oil absorbent f

  • PDF

공기층을 갖는 공조덕트 구조물에서 흡음재의 흡음특성에 관한 연구 (A Study on the Absorption Characteristics of Absorbents in Duct System with the Air Cavity)

  • 김찬묵;김도연;방극호
    • 소음진동
    • /
    • 제10권5호
    • /
    • pp.892-897
    • /
    • 2000
  • In this paper, experimental methods to find acoustic characteristics of acoustically treated air-conditioning duct system are proposed. Existing methods to analyze acoustic properties of duct with absorbent material have dilemma which has to assume the wave in duct to be a plane wave. Under this assumption. applicable frequency limitation makes accurate analysis of practical air-conditioning system impossible. In order to analyze the properties of in-lined treated absorbent with high degree of accuracy, in this experiments the range of exciting frequency of sound source is broadband, which means that source speaker excited higher mode of in-duct sound field. Also, to define the relations of air cavity to the acoustic characteristics, acoustic experiments on ducts with air cavity of different depth are operated. In conclusion, air-cavity makes the absorbing ability of duct improved in low frequency range. Due to the interactions between the air cavity depth and the depth of absorbents, according to depth of cavity, the magnitude of absorption coefficients vs frequencies in specific range is changed. In lower frequency range, the absorption of sound energy by air cavity is more dominant than by absorbent itself, in higher range, the inversion is true.

  • PDF

하수슬러지 슬래그를 이용한 다공성 세라믹스 흡음재료 제조 (Preparation of Porous Ceramics Sound Absorbent Material Using Sewage Sludge Slag)

  • 신대용;한상목
    • 한국세라믹학회지
    • /
    • 제40권3호
    • /
    • pp.273-278
    • /
    • 2003
  • 다공질 세라믹스 흡음재료의 흡음특성과 물리.기계적 특성에 미치는 하수슬러지 슬래그 첨가량과 입경 효과에 대하여 조사하였다. 시편의 물리.기계적 특성은 슬래그 입경과 관계 없이 소성온도가 증가하고 슬래그 함량이 감소함에 따라 증가하였으며, 슬래그의 함량이 일정한 시편은 물유리 첨가량이 증가하고 슬래그 입경이 감소함에 따라 증가하였다. 1~3mm 크기의 슬래그를 약 77~89 wt% 함유하고 1,05$0^{\circ}C$에서 2시간 소성한 시편의 부피비중은 1.48~1.71, 압축강도 85~163 kgf/$\textrm{cm}^2$을 나타내었으며, 1~3mm의 슬래그를 이용한 시편은 저주파영역, 슬래그 입경이 1 mm이하인 시편은 고주파영역의 흡음특성이 향상되었으며, 시편의 두께가 증가함에 따라 저주파영역의 흡음특성이 향상되었다.

공기층을 갖는 실제덕트 구조물에서의 소음저감에 관한 연구 (A study on the noise reduction of practical duct system with the air cavity)

  • 김찬묵;이두호;방극호
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 춘계학술대회논문집
    • /
    • pp.1687-1692
    • /
    • 2000
  • In this paper, experimental methods to find acoustic characteristics of acoustically treated air-conditioning duct system are proposed. Existing methods to analyze acoustic properties of duct with absorbent material have a dilemma which has to assume the wave in duct to be a plane wave. Under this assumption, applicable frequency limitation makes accurate analysis of practical air-conditioning system impossible. In order to analyze the properties of in-lined treated absorbent with high degree of accuracy, in this experiments the range of exciting frequency of sound source is broadband, which means that source speaker excites higher mode of in-duct sound field. Also, to define the relations of air cavity to the acoustic characteristics, acoustic experiments on ducts with air cavity of different depth are operated. In conclusion, air-cavity makes the absorbing ability of duct improved in low frequency range. Due to the interactions between the air cavity depth and the depth of absorbents, according to depth of cavity, the magnitude of absorption coefficients vs frequencies in specific range is changed. In lower frequency range, the absorption of sound energy by air cavity is more dominant than by absorbent itself, in higher range, the inversion is true.

  • PDF

입사각에 따른 흡음재의 반사 계수 측정 방법론 및 오차에 대한 고찰 (Measurement of Reflection Coefficient of Sound Absorbent Material with Respect to Angle of Incidence and Its Associated Errors)

  • 이수열;김상렬;김양한
    • 소음진동
    • /
    • 제4권3호
    • /
    • pp.295-305
    • /
    • 1994
  • The reflection coefficient of a material at oblique incidence is measured in a free field. The sound pressure distributions are measured at discrete points on two measurement lines and then decomposed into plane wave components by using spatial Fourier transform. The inciedent and reflected plane wave components are obtained from a set of "decomposition equations" of which uses the plane wave propagation theory. Numerical simulations and experiments have been performed to see the effect of finite size of measurement area. To reduce this effect, a window fuction has been performed to see the effects of finite size of mesurement area. To reduce this effect, a window function has been proposed and its effect on the measurement of sound absorbing material property has been studied as well. The reflection coefficient obtained by this method is compared with those obtained from other methods; 2-microphone method in a duct and an expirical equation of which determines the characteristic impedance .rho.c and propagation constant k of a material from flow resistance information.formation.

  • PDF

유한요소법에 의한 흡음재 음향특성 연구 및 검증 (Finite Element analysis of Acoustic Behavior of Absorbent Materials with experimental Verification)

  • 정환익;김관주;박진규;김상헌
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.874-878
    • /
    • 2003
  • Acoustic materials are used for the purpose of absorbing noise and reducing transmission of sound into the receiving room. The purpose of this research is to predict the performance of absorbent materials with respect to absorbing behavior and transmission loss as possible as accurately. The performance of the absorbent materials are carried out systematically as follows: The Biot parameter are measured, first. Then using above parameters as input, LMS's SYSNOISE and VIOLINS programs are used to predict absorption coefficient and transmission loss values, which magnitudes are compared with experimental results. As an sample acoustic material, SK SKY VIVA and PET are selected.

  • PDF