• Title/Summary/Keyword: Sorption equilibrium

Search Result 203, Processing Time 0.028 seconds

Study on Adsorption Characteristics of Perfluorinated Compounds(PFCs) with Structural Properties (과불화화합물 구조적 속성에 따른 흡착 특성 연구)

  • Choi, HyoJung;Kim, Deok Hyun;Yoon, JongHyun;Kwon, JongBeom;Kim, Moonsu;Kim, Hyun-Koo;Shin, Sun-Kyoung;Park, Sunhwa
    • Journal of Soil and Groundwater Environment
    • /
    • v.26 no.5
    • /
    • pp.20-28
    • /
    • 2021
  • Perfluorinated compounds(PFCs), an emerging environmental pollutant, are environmentally persistent and bioaccumulative organic compounds that possess a toxic impact on human health and ecosystems. PFCs are distributed widely in environment media including groundwater, surface water, soil and sediment. PFCs in contaminated solid can potentially leach into groundwater. Therefore, understanding PFCs partitioning between the aqueous phase and solid phase is important for the determination of their fate and transport in the environment. In this study, the sorption equilibrium batch and kinetic experiment of PFCs were carried out to estimated the sorption coefficient(Kd) and the fraction between aqueous-solid phase partition, respectively. Sorption branches of the PFDA(Perfluoro-n-decanoic acid), PFNA(Perfluoro-n-nonanoic acid), PFOA(Perfluoro-n-octanoic acid), PFOS(Perfluoro-1-octane sulfonic acid) and PFHxS(Perfluoro-1-hexane sulfonic acid) isotherms were nearly linear, and the estimated Kd was as follow: PFDA(1.50) > PFOS(1.49) > PFNA(0.81) > PFHxS(0.45) > PFOA(0.39). The sorption kinetics of PFDA, PFNA, PFOA, PFOS and PFHxS onto soil were described by a biexponential adsorption model, suggesting that a fast transport into the surface layer of soil, followed by two-step diffusion transport into the internal water and/or organic matter of soil. Shorter times(<20hr) were required to achieve equilibrium and fraction for adsorption on solid(F1, F2) increased with perfluorinated carbon chain length and sulfonate compounds in this study. Overall, our results suggested that not only the perfluorocarbon chain length, but also the terminal functional groups are important contributors to electrostatic and hydrophobic interactions between PFCs and soils, and organic matter in soils significantly affects adsorption maximum capacity than kinetic rate.

Permeation Characteristics of Water Vapor Through PVA/PSSA_MA/THS-PSA Membranes (PVA/PSSA-MA/THS-PSA 막의 수증기 투과특성에 관한 연구)

  • Rhim, Ji-Won;Cho, Hyun-Il;Kim, Dae-Hoon;Ha, Seong-Yong;Nam, Sang-Yong
    • Membrane Journal
    • /
    • v.17 no.2
    • /
    • pp.140-145
    • /
    • 2007
  • In this study, 3-(trihydroxysilyl)-1-propanesulfonic acid (THS-PSA) was added to poly(vinyl alcohol) (PVA) membranes crosslinked with poly(styrene sulfonic acid-co-maleic acid) (PSSA_MA) to improve the separation characteristics toward water vapors in the air. The prepared membranes varying both PSSA_MA and THS-PSA amounts were also synthesized at different cross linking temperatures. Then, in order to investigate the separation characteristics of the resulting membranes, the dynamic vapor sorption (DVS) and vapor permeation experiments were carried out. The increase of cross-linking temperature showed longer time to reach the equilibrium sorption state from the dynamic vapor sorption experiments. PVA/PSSA_MA (3%)/THA-PSA(7%) prepared at $120^{\circ}C$ gave the highest permeability of 480 barrer at $35^{\circ}C$.

Prediction of Gas Phase Sorption Isotherms on The Basis of QSAR Method (QSAR 방법을 이용한 가스 상태의 등온흡착선 예측)

  • Kim, Jong O
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.11 no.3
    • /
    • pp.11-18
    • /
    • 1991
  • Volatile organic compounds(VOC) present in or generated by many sources, can be toxic, mutagenic or even carcinogenic, so that control of such emissions is significant. The 6 chlorinated organic chemicals as VOC were examined in this study. Prediction of the behavior of VOC on activated carbon beds is an important part of control system design. The objective of this study was to predict gas phase sorption isotherms from physical properties and liquid phase isotherms obtained with the same adsorbent and adsorbate. One of the techniques that was investigated was quantitative structure-activity relationships(QSAR) for the predicition procedures. It was possible to estimate sorption isotherms in the gas phase($a_g$) using either connectivity index, $^2{\chi}$, and the Henry's law coefficient ($H_a$) or the solubility and the equilibrium concentration in the gas phase. As a result of study, the predictive equation based on Freundlich model for $a_g$ was ${\log}\;a_g=0.238\;^2{\chi}+0.573\;{\log}\;H_a+4.330(r^2=0.94)$. Finally, this would provide a potentially useful tool to describe and predict sorption capacity without time-consuming tests.

  • PDF

Effect of Dextrin on Sorption Characteristics and Quality of Vacuum Frying Dried Carrot (감압유탕 건조당근의 흡습특성 및 품질에 미치는 덱스트린의 영향)

  • Rhee, Chul;Cho, Seung-Yong
    • Korean Journal of Food Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.241-247
    • /
    • 1991
  • The objective of this experiment was to study the effect of dextrin on vacuum frying dried carrots. The concentrations of dextrin solution were 0%, 10%, 20%, 30% and the criteria for quality evaluation were sorption characteristics, rehydration power, color and crispness differences. The sorption characteristics were evaluated by Peleg's equation. Rehydration, color and crispness were determined by rehydration percentage, colorimetry and sensory evaluation, respectively. The dextrin pretreatment of carrot resulted in the reduction of adsorption rate and the equilibrium moisture content of dried carrot at various range of relative humidities, and the adsorption rate of samples pretreated with aqueous dextrin solution at different temperatures($4^{\circ}C,\;20^{\circ}C,\;30^{\circ}C$) were in the following decreasing order : control>10% dextrin>20% dextrin>30% dextrin. As the concentration of dextrin solution and ambient temperature increased, BET monomolecular layer moisture content decreased significantly. In addition, as the concentration of dextrin solution increased, the crispness intensity increased and the color of sample treated with 20% dextrin solution was similar to that of raw carrot.

  • PDF

A Study on Remediation Characteristics of Soils Contaminated with Co using Solvent Flushing Method (Solvent Flushing방법을 이용한 코발트로 오염된 토양의 제염특성에 관한 연구)

  • 김계남;원휘준;김희연;이병직;오원진
    • Journal of Korea Soil Environment Society
    • /
    • v.4 no.2
    • /
    • pp.55-62
    • /
    • 1999
  • The solvent flushing apparatus for soil remediation was designed. After the soil around nuclear facilities was sampled and compulsorily contaminated by Co, the characteristics remediated by solvent flushing were analyzed. Meanwhile, the nonequilibrium sorption code was developed for modelling of the soil remediation by solvent flushing, input parameters needed for modelling were measured by laboratory experiment. Experimental results are as follows : The soil around nuclear facilities belongs to Silt Loam including a lot of silt and sand. When water was used as a solvent, the higher was the hydraulic conductivity. the higher the efficiency of soil remediation was. The values calculated by the nonequilibrium sorption code agreed with experimental values more exactly than the values calculated by the equilibrium sorption code. When EDTA solution was used as a solvent. the soil remediation efficiency by EDTA solution showed higher than that by water.

  • PDF

Fluoride Sorption Property of Lanthanum Hydroxide (란탄수산화물의 불소 흡착 특성)

  • Kim, Jung-Hwan;Park, Hyun-Ju;Jung, Kyung-Hun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.7
    • /
    • pp.714-721
    • /
    • 2010
  • This research was undertaken to evaluate the feasibility of lanthanum hydroxide for fluoride removal from aqueous solutions. A batch sorption experiments were conducted to study the influence of various factors such as pH, contact time, initial fluoride concentration and temperature on the sorption of fluoride on lanthanum hydroxide. The optimum fluoride removal was observed in the $pH_{eq}{\leq}8.8$. Sorption equilibrium of fluoride on lanthanum hydroxide was better described by the Freundlish isotherm model than by the Langmuir isotherm model. The adsorption energy obtained from D-R model was 9.21 kJ/mol indicating an ion-exchange process as primary adsorption mechanism. The pseudo-second-order kinetic model described well the experimental kinetic data. Thermodynamic parameters such as ${\Delta}Go^{\circ}$, ${\Delta}H^{\circ}$ and ${\Delta}S^{\circ}$ indicated that the nature of fluoride sorption is spontaneous and endothermic. The used lanthanum hydroxide could be regenerated by washing with NaOH solution. Also, the results applied to real ground water indicate that fluoride selectivity and removal capacity of lanthanum hydroxide were superior to those of PA anion-exchange resin.

Adsorption of Lead Ions from Aqueous Solutions Using Milled Pine Bark (분말 소나무 수피를 이용한 수용액 중의 납 이온 흡착)

  • Oh, Mi-Young;Kim, Yeong-Kwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.3
    • /
    • pp.389-395
    • /
    • 2006
  • The use of pine bark, a natural adsorbent prepared from Korean Red Pine (Pinus densifloral), was studied for its adsorption behavior of lead ion from aqueous solution. Adsorption experiments were carried out on lead ion concentrations of 10mg/L. Adsorption of lead ion could be described by both Langmuir and Freundlich adsorption isotherms. Treatment of the bark with nitric acid greatly increased initial adsorption rate, and equilibrium sorption capacity increased by approximately 48%. A pseudo second-order kinetic model fitted well for the kinetic behavior of lead ion adsorption onto the bark. Acid-treated bark demonstrated its adsorption capacity quite close to that of granular activated carbon. Results of this study indicated that ion exchange and chelation were involved in the adsorption process.

Simulating Bioremediation of Uranium-Contaminated Aquifers

  • ;Peter R. Jaffe
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.09a
    • /
    • pp.161-166
    • /
    • 2002
  • Bioremediation of trace metals in groundwater may require the manipulation of redox conditions via the injection of a carbon source. To simulate the numerous biogeochemical processes that will occur during the bioremediation of trace-metal-contaminated aquifers, a reactive transport model has been developed. The model consists of a set of coupled mass balance equations, accounting for advection, hydrodynamic dispersion, and a kinetic formulation of the biological or chemical transformations affecting an organic substrate, electron acceptors, corresponding reduced species, and trace metal contaminants of interest, uranium in this study. The redox conditions of the domain are characterized by estimating the pE, based on the concentrations of the dominant terminal electron acceptor and its corresponding reduced specie. This pE and the concentrations of relevant species we then used by a modified version of MINTEQA2, which calculates the speciation/sorption and precipitation/dissolution of the species of interest under equilibrium conditions. Kinetics of precipitation/dissolution processes are described as being proportional to the difference between the actual and calculated equilibrium concentration.

  • PDF

Moisture Migration of Concrete Members under High Temperature (고온조건에서 콘크리트 부재의 수분이동)

  • Lee, Tae-Gyu;Kim, Hye-Uk
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.1530-1535
    • /
    • 2009
  • Moisture evaporates, when concrete is exposed to fire, not only at concrete surface but also at inside the concrete to adjust the equilibrium and transfer properties of moisture. The equilibrium properties of moisture are described by means of water vapor sorption isotherms, which illustrate the hysteretical behavior of materials. In this paper, the prediction method of the moisture distribution inside the high strength concrete members under the high temperature is presented. Finite element method is employed to facilitate the moisture diffusion analysis for any position of member. And the moisture diffusivity model of high strength concrete by high temperature is proposed. To demonstrate the validity of this numerical procedure, the prediction by the proposed algorithm is compared with the test result of other researcher. The proposed algorithm shows a good agreement with the experimental results including the vaporization effect inside the concrete.

  • PDF

Discrimination of rival isotherm equations for aqueous contaminant removal systems

  • Chu, Khim Hoong
    • Advances in environmental research
    • /
    • v.3 no.2
    • /
    • pp.131-149
    • /
    • 2014
  • Two different model selection indices, the Akaike information criterion (AIC) and the coefficient of determination ($R^2$), are used to discriminate competing isotherm equations for aqueous pollutant removal systems. The former takes into account model accuracy and complexity while the latter considers model accuracy only. The five types of isotherm shape in the Brunauer-Deming-Deming-Teller (BDDT) classification are considered. Sorption equilibrium data taken from the literature were correlated using isotherm equations with fitting parameters ranging from two to five. For the isotherm shapes of types I (favorable) and III (unfavorable), the AIC favors two-parameter equations which can easily track these simple isotherm shapes with high accuracy. The $R^2$ indicator by contrast recommends isotherm equations with more than two parameters which can provide marginally better fits than two-parameter equations. To correlate the more intricate shapes of types II (multilayer), IV (two-plateau) and V (S-shaped) isotherms, both indices favor isotherm equations with more than two parameters.