• 제목/요약/키워드: Sorption cooler

검색결과 3건 처리시간 0.014초

Prediction model of 4.5 K sorption cooler for integrating with adiabatic demagnetization refrigerator (ADR)

  • Kwon, Dohoon;Kim, Jinwook;Jeong, Sangkwon
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제24권1호
    • /
    • pp.23-28
    • /
    • 2022
  • A sorption cooler, which utilizes helium-4 as a working fluid, was previously developed and tested in KAIST. The cooler consists of a sorption pump and a thermosyphon. The developed sorption cooler aims to pre-cool a certain amount of the magnetic refrigerant of an adiabatic demagnetization refrigerator (ADR) from 4.5 K to 2.5 K. To simulate the high heat capacitance of the magnetic refrigerant, liquid helium was utilized not only as a refrigerant for the sorption cooling but also as a thermal capacitor. The previous experiment, however, showed that the lowest temperature of 2.7 K which was slightly higher than the target temperature (2.5 K) was achieved due to the radiation heat leak. This excessive heat leak would not occur when the sorption cooler is completely integrated with the ADR. Thus, based on the experimentally obtained pumping speed, the prediction model for the sorption cooler is developed in this study. The presented model in this paper assumes the sorption cooler is integrated with the ADR and the heat leak is negligible. The model predicts the amount of the liquid helium and the required time for the sorption cooling process. Furthermore, it is confirmed that the performance of the sorption cooler is enhanced by reducing the volume of the thermosiphon. The detailed results and discussions are summarized.

흡습 냉각 원리를 이용한 소형 냉각 패드에 관한 연구 (Conceptual Development of a Subminiature Cool Pad Applying Sorption Cooling Effect)

  • 황용신;이대영;김우승
    • 설비공학논문집
    • /
    • 제16권2호
    • /
    • pp.121-127
    • /
    • 2004
  • This paper describes conceptual development and idea-verification of a sub-miniature portable cooler which dose not necessitate any pre-cooling nor any external energy supply. The basic principle of the cooling mechanism is the vaporization of water and sub-sequent cooling due to the evaporative latent heat loss. In this work, the vaporization of the water is stimulated by desiccant material to improve the cooling effect. The evaporative cooling caused by the desiccant is modeled and analyzed considering the sorption characteristics of the desiccant. In addition, the portable cooler is fabricated in the shape of a thin pad, and its cooling characteristics are tested and compared with the analytic results.

Review on innovative small refrigeration methods for sub-Kelvin cooling

  • Dohoon, Kwon;Junhyuk, Bae;Sangkwon, Jeong
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제24권4호
    • /
    • pp.71-77
    • /
    • 2022
  • Sub-Kelvin cooling has been generally demanded for the fields of low temperature physics, such as physical property measurements, astronomical detection, and quantum computing. The refrigeration system with a small size can be appropriately introduced when the measurement system does not require a high cooling capacity at sub-Kelvin temperature. The dilution refrigerator which is a common method to reach sub-Kelvin, however, must possess a large 3He circulation equipment at room temperature. As alternatives, a sorption refrigerator and a magnetic refrigerator can be adopted for sub-Kelvin cooling. This paper describes those coolers which have been developed by various research groups. Furthermore, a cold-cycle dilution refrigerator of which the size of the 3He circulation system is minimized, is also introduced. Subsequently, a new concept of dilution refrigerator is proposed by our group. The suggested cooler can achieve sub-Kelvin temperature with a small size since it does not require any recuperator and turbo-molecular vacuum pump. Its architecture allows the compact configuration to reach sub-Kelvin temperature by integrating the sorption pump and the magnetic refrigerators. Therefore, it may be suitably utilized in the low temperature experiments requiring low cooling capacity.