• Title/Summary/Keyword: Soraphen A

Search Result 6, Processing Time 0.03 seconds

Isolation of Myxobacteria Carrying Soraphen Biosynthetic Gene Clusters (Soraphen 생합성 유전자군을 갖는 점액세균의 분리)

  • Lee, Cha-Yul;Hyun, Hye-Sook;Cho, Kung-Yun
    • Microbiology and Biotechnology Letters
    • /
    • v.37 no.1
    • /
    • pp.10-16
    • /
    • 2009
  • Polymerase chain reactin (PCR) could be a simple way to screen new microbial strains producing useful secondary metabolites if their biosynthetic genes are known and candidate strains to be screened are available. In this study, we have screened two myxobacterial strains, KYC3047 and KYC3076, carrying genes appeared to be biosynthetic genes of soraphen A, a potent antifungal substance, out of 50 cellulose degrading myxobacteria using PCR. The two strains were identified as Sorangium cellulosum based on morphological, physiological, and molecular biological characteristics. Both of the strains produced substances having strong antifungal activities as expected against Candida albicans, a causative agent of candidiasis, and Colletotrichum acutatum, a causative agent of anthracnose on pepper.

Correlation Between Sorangium cellulosum Subgroups and Their Potential for Secondary Metabolite Production

  • Lee, Chayul;An, Dongju;Lee, Hanbit;Cho, Kyungyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.3
    • /
    • pp.297-303
    • /
    • 2013
  • Phylogenetic analysis of the groEL1 and xynB1 gene sequences from Sorangium cellulosum strains isolated in Korea previously revealed the existence of at least 5 subgroups (A-E). In the present study, we used sequence analysis of polymerase chain reaction-amplified biosynthetic genes of strains from the 5 subgroups to indicate correlations between S. cellulosum subgroups and their secondary metabolic gene categories. We detected putative biosynthetic genes for disorazol, epothilone, ambruticin, and soraphen in group A, group C, group D, and group E strains, respectively. With the exception of KYC3204, culture extracts from group A, group B, and group C strains exhibited no noticeable antimicrobial inhibitory activities. By contrast, culture extracts from group D strains inhibited the growth of Candida albicans, whereas culture extracts from group E strains inhibited the growth of C. albicans and Staphylococcus aureus. High performance liquid chromatography analysis of the culture extracts from the strains of each subgroup revealed unique peak patterns. Our findings indicate the existence of at least 5 subgroups of S. cellulosum strains, each of which has the potential to produce a unique set of secondary metabolites.