• Title/Summary/Keyword: Soot Particles

Search Result 118, Processing Time 0.028 seconds

The Measurement of Soot Particle Temperatures Using a Two-Color Pyrometry and Modulated LII Signals (Modulated LII 신호와 이색법을 이용한 매연입자 온도 계측)

  • Nam, Youn-Woo;Lee, Won-Nam
    • 한국연소학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.110-116
    • /
    • 2006
  • A new measurement technique based on a two-color pyrometry and modulated LII signals to measure local soot particle temperatures has been proposed and examined experimentally. The theoretical review suggests that modulated LII signals of soot particles is suitable for a two-color pyrometry as long as the temperature increase due to laser heating remains relatively small. The modulated LII signals from ethylene and propylene diffusion flames were simultaneously measured at 550 and 750 nm by a dual measurement system that consists of optical fibers, PMT and lock-in amps. The local soot particle temperatures of diffusion flames could be obtained using a two-color pyrometry and modulated LII signal based new technique.

  • PDF

Temperature Measurement in Concentric Diffusion Flames by Rapid Insertion Technique (급속 삽입법에 의한 화염 내부 온도 분포 측정)

  • Lee, Gyo-Woo;Chung, Young-Rok;Jurng, Jong-Soo
    • Journal of the Korean Society of Combustion
    • /
    • v.4 no.2
    • /
    • pp.75-83
    • /
    • 1999
  • The effect of temperature distributions on soot volume fraction in double-concentric diffusion flames have been investigated experimentally. Using fine thermocouple wires and a rapid insertion mechanism, we have measured temperature without the effect of soot particles attached to the thermocouple junction, which can lower the temperature signal about 100 K by increasing the heat loss from the junction by radiation. The temperature at the flame axis is higher in the double-concentric diffusion flames than in normal co-flow diffusion flames because of the inverse diffusion flame. However, it is almost the same as that at the periphery of normal flames, on which the inverse flame does not have an effect. Thus, the lower soot concentration found in the double-concentric diffusion flame can be explained by the effect of nitrogen diffusion from the central air jet.

  • PDF

Soot Reduction in Diffusion Flames Using Dielectric Barrier Discharge (유전체 방전을 이용한 확산화염에서의 매연저감 특성)

  • Cha, Min-Suk;Kim, Kwan-Tae;Chung, Suk-Ho;Lee, Sang-Min
    • 한국연소학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.27-32
    • /
    • 2003
  • The effect of non-thermal plasma on diffusion flames in co-flow jets has been studied experimentally by adopting a dielectric barrier discharge technique. The generation of streamers was enhanced with a flame due to increased reduced electric fields by high temperature burnt gas and the abundance of ions in the flame region. The effect of streamers on flame behavior reveals that the flame length was significantly decreased as the applied voltage increased and the yellow luminosity by the radiation of soot particles was also significantly reduced. The formation of PAH and soot was influenced appreciably by the non-thermal plasma, while the flame temperature and the concentration of major species were not influence much with the plasma generation. The results demonstrated that the application of non-thermal plasma can be a viable technique in controlling soot generation in flames with low power consumption in the order of 1 W.

  • PDF

A Numerical Study of Heat and Mass Transfer Model of LII for Nanoscale Soot Particles (나노크기의 매연입자에 대한 LII의 열-물질 전달 모델에 관한 수치적 연구)

  • Kim, Gyu-Bo;Shim, Jae-Young;Chang, Young-June;Jeon, Chung-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.7 s.262
    • /
    • pp.596-603
    • /
    • 2007
  • As increasing interest for soot emission. etc in combustion systems, various studies are being carried out for the reduction and measurement techniques of soot. Especially, laser induced incandescence is the useful measurement technique which has distinguished spatial and temporal resolution for primary particle size, volume fraction and aggregated particle size etc. Time resolved laser induced incandescence is the technique for measuring primary particle size that is decided to solve the signal decay rate which is related to the cooling behavior of heated particle by pulsed laser. The cooling behavior of heated particle is able to represent the heat and mass transfer model which are involved constants of soot property for surround gas temperature on the our previous work. In this study, it is applied to the time-dependence thermodynamic properties for soot temperature instead of constants of soot property for surround gas temperature and compared two different model results.

The Effect of Oxygen and Carbon Dioxide Concentration on Soot Formation in Nonpremixed Flames Using Time Resolved LII Technique

  • Oh, Kwang-Chul;Shin, Hyun-Dong
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.11
    • /
    • pp.2068-2076
    • /
    • 2005
  • The influence of oxygen concentration and CO$_{2}$ as diluent in oxidizer side on soot characteristics was studied by Laser Induced Incandescence, Time Resolved LII and Transmission Electron Microscopy photography in non-premixed co flowing flames. Through the comparison of TEM photographs and the decay rate of LII signal, suitable two delay times of TIRE-LII method and signal sensitivity ($\Delta$S$_{TIRE-LII/) were determined. The effects of O$_{2}$ and CO$_{2}$ as diluent in oxidizer side on soot formation are investigated with these calibrated techniques. The O$_{2}$+CO$_{2}$, N$_{2}$, and [Ar+CO$_{2}$] mixture in co-flow were used to isolate CO2 effects systematically. The number concentration of primary particle and soot volume fraction abruptly decrease by the addition of CO$_{2}$ to the co-flow. This suppression is resulted from the short residence time in inception region because of the late nucleation and the decrease of surface growth distance by the low flame temperature due to the higher thermal capacity and the chemical change of CO$_{2}$ including thermal dissociation. As the oxygen concentration increases, the number concentration of soot particles at the inception region increases and thus this increase of nucleation enhances the growth of soot particle.

Numerical Study on the Thermophoretic Deposition Characteristics of Soot Particles for Wall Temperature of Burner and Surrounding Air Temperature in Combustion Duct (버너의 벽면온도와 연소실내 주위공기온도에 따른 매연입자의 열영동 부착 특성에 관한 수치적 연구)

  • Choi, Jae-Hyuk;Han, Won-Hui;Yoon, Doo-Ho;Yoon, Seok-Hun;Chung, Suk-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.1
    • /
    • pp.57-65
    • /
    • 2008
  • The characteristics of soot deposition on the cold wall in laminar diffusion flames have been numerically analyzed with a two-dimension with the FDS (Fire Dynamics Simulator). In particular, the effects of surrounding air temperature and wall temperature have been discussed. The fuel for the flame is an ethylene ($C_2H_4$). The surrounding oxygen concentration is 35%. Surrounding air temperatures are 300K, 600K, 900K and 1200K. Wall temperatures are 300K, 600K and 1200K. The soot deposition length defined as the relative approach distance to the wall per a given axial distance is newly introduced as a parameter to evaluate the soot deposition tendency on the wall. The result shows that soot deposition length is increased with increasing the surrounding air temperatures and with decreasing the wall temperature. And the numerical results led to the conclusion that it is essential to consider the thermophoretic effect for understanding the soot deposition on the cold wall properly.

Combustion Characteristics and Soot Formation in a Jet Diffusion Flame (제트 확산화염의 연소특성과 매연생성에 관한 연구)

  • 이교우;백승욱
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.10
    • /
    • pp.2712-2723
    • /
    • 1994
  • Numerical simulation of an axisymmetric ethylene-air jet diffusion flame has been carried out in order to investigate flame dynamics and soot formation. The model solves the time-dependent Navier-Stokes equations and includes models for soot formation, chemical reaction, molecular diffusion, thermal conduction, and radiation. Numerically FCT(Flux Corrected Transport) and DOM(Discrete Ordinate Method) methos are used for convection and radiation trasport respectively. Simulation was conducted for a 5 cm/sec fuel jet flowing into a coflowing air stream. The maximum flame temperature was found to be approximately 2100 K, and was located at an axial position of approximately 5 cm from the base of the flame. The maximum soot volume fraction was about $7{\times}10^{-7}$, and was located within the high temperature region where the fuel mole fraction ranges from 0.01 to 0.1. The buoyancy-driven low-frequency(12~13 Hz) structures convected along the outer region of the flame were captured. In case without radiation trasport, the maximum temperature was higher by 150 K than in case with radiation. Also the maximum soot volume fraction reached about $8{\times}10^{-6}$. As the the hydrocarbon fuel forms many soot particles, the radiation transport becomes to play a more important role.

Soot Formation and Combustion in Turbulent Flames (난류 화염 내에서의 매연 입자의 생성및 재연소)

  • 정종수;신현동;이춘식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.5
    • /
    • pp.962-978
    • /
    • 1989
  • A new model of the combustion rates of soot particle in turbulent flames has been suggested. This model applies the combustion rate of soot particles in laminar flames and uses local time-averaged quantities in order to consider the effect of the chemical reaction on the soot combustion in turbulent flames. The proposed rate equation has been tested for two propane-air turbulent round-jet diffusion flames and gives better predictions for the soot concentration field of two flames than the model previously used, especially in low temperature regions. A modified Monte carlo Method for analyzing radiative heat transfer of a flame also has been suggested and tested, which reveals good results.

The Characteristics of Exhausted Soot Particles from a Common-Rail Direct Injection Diesel Engine by TIRE-LII (커먼레일 직접분사식 디젤엔진에서 시분해 레이저 유도 백열법을 이용한 매연입자의 배출 특성)

  • Kim, Gyu-Bo;Han, Hwi-Young;Chang, Young-June;Jeon, Chung-Hwan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.5
    • /
    • pp.78-85
    • /
    • 2007
  • Recently, diesel vehicles have been increased and their emission standards have been getting strict. The emission of diesel vehicles contains numerous dangerous compounds, especially particulate matters cause a serious environmental pollutant and affect to human health seriously. Thousands of studies have already reported that particulate matters are associated with respiratory and cardiovascular diseases, and death. Due to these, it is necessary to measure the soot concentration and soot particle size in laboratory flames or practical engines to recognize the soot formation, and develop the control strategies for soot emission. In this study, the characteristics of exhausted soot particle size and volume fraction from 2.0L CRDI diesel engine have been investigated as varying engine speed and load. Laser induced incandescence has been used to measure soot concentration. Time-resolved laser induced incandescence has been used to determine soot particle size in the engine. The soot volume fraction is increased as increasing engine load but soot volume fraction is decreased as increasing engine speed. The primary particle size is distributed about $35nm{\sim}60nm$ at each experimental conditions.

Quantitative Measurement of Soot concentration by Two-Wavelength Correction of Laser-Induced Incandescence Signals (2파장 보정 Laser-Induced Incandescence 법을 이용한 매연 농도 측정)

  • 정종수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.3
    • /
    • pp.54-65
    • /
    • 1997
  • To quantify the LII signals from soot particle of flames in diesel engine cylinder, a new method has been proposed for correcting LII signal attenuated by soot particles between the measuring point and the detector. It has been verified by an experiment on a laminar jet ethylene-air diffusion flame. Being proportional to the attenuation, the ratio of LII signal at two different detection wavelengths can be used to correct the measured LIIsignal and obtain the unattenuated LII signal, from which the soot volume fraction in the flame can be estimated. Both the 1064-nm and frequency-doubled 532-nm beams from the Nd : YAG laser are used. Single-shot, one-dimensional(1-D) line images are recorded on the intensified CCD camera, with the rectangular-profile laser beam using 1-mm-diameter pinhole. Two broadband optical interference filters having the center wavelengths of 647 nm and 400 nm respectively and a bandwidth of 10 nm are used. This two-wavelength correction has been applied to the ethylene-air coannular laminar diffusion flame, previously studied on soot formation by the laser extinction method in this laboratory. The results by the LII measurement technique and the conventional laser extinction method at the height of 40 nm above the jet exit agreed well with each other except around outside of the peaks of soot concentration, where the soot concentration was relatively high and resulting attenuation of the LII signal was large. The radial profile shape of soot concentration was not changed a lot, but the absolute value of the soot volume fraction around outside edge changed from 4ppm to 6.5 ppm at r=2.8mm after correction. This means that the attenuation of LII signal was approximately 40% at this point, which is higher than the average attenuation rate of this flame, 10~15%.

  • PDF