• Title/Summary/Keyword: Sonochemical

Search Result 93, Processing Time 0.026 seconds

Syntheses of CdTe Quantum Dots and Nanoparticles through Simple Sonochemical Method under Multibubble Sonoluminescence Conditions

  • Hwang, Cha-Hwan;Park, Jong-Pil;Song, Mi-Yeon;Lee, Jin-Ho;Shim, Il-Wun
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.7
    • /
    • pp.2207-2211
    • /
    • 2011
  • Colloidal cadmium telluride (CdTe) quantum dots (QDs) and their nanoparticles have been synthesized by one pot sonochemical reactions under multibubble sonoluminescence (MBSL) conditions, which are quite mild and facile compared to other typical high temperature solution-based methods. For a typical reaction, $CdCl_2$ and tellurium powder with hexadecylamine and trioctylphosphine/trioctylphosphineoxide (TOP/TOPO) as a dispersant were sonicated in toluene solvent at 20 KHz and a power of 220W for 5-40 min at 60 $^{\circ}C$. The sizes of CdTe particles, in a very wide size range from 2 nm-30 ${\mu}m$, were controllable by varying the sonicating and thermal heating conditions. The prepared CdTe QDs show different colors from pale yellow to dark brown and corresponding photoluminescence properties due mainly to the quantum confinement effect. The CdTe nanoparticles of about 20 nm in average were found to have band gap of 1.53 eV, which is the most optimally matched band gap to solar spectrum.

Recent Advances in Advanced Oxidation Processes

  • Huang, Chin-Pao
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 1998.10a
    • /
    • pp.1-1
    • /
    • 1998
  • Advanced (Chemical) oxidation processes (AOP) differ from most conventional ones in that hydroxyl radical(OH.) is considered to be the primary oxidant. Hydroxyl radicalcan react non-selectively with a great number of organic and inorganic chemicals. The typical rate constants of true hydroxyl radical reactions are in the range of between 109 to 1012 sec-1. Many processes are possible to generate hydroxyl radical. These include physical and chemical methods and their combinations. Physical means involves the use of high energy radiation such as gamma ray, electron beam, and acoustic wave. Under an applied high energy radiation, water molecules can be decomposed to yield hydroxyl radicals or aqueous electrons. Chemical means include the use of conventional oxidants such as hydrogen peroxide and ozone, two of the most efficient oxidants in the presence of promoter or catalyst. Hydrogen peroxide in the presence of a catalyst such as divalent iron ions can readily produce hydroxyl radicals. Ozone in the presence of specific chemical species such as OH- or hydrogen peroxide, can also generate hydroxyl radicals. Finally the combination of chemical and physical means can also yield hydroxyl radicals. Hydrogen peroxide in the presence of acoustic wave or ultra violet beam can generate hydroxyl radicals. The principles for hydroxyl radical generation will be discussed. Recent case studied of AOP for water treatment and other environmental of applications will be presented. These include the treatment of contaminated soils using electro-Fenton, lechate treatment with conventional Ponton, treatment of coal for sulfur removal using sonochemical and the treatment of groundwater with enhanced sonochemical processes.

  • PDF

Fabrication of Diameter-tunable Well-aligned ZnO Nanorod Arrays via a Sonochemical Route

  • Jung, Seung-Ho;Oh, Eu-Gene;Lee, Kun-Hong;Jeong, Soo-Hwan;Yang, Yo-Sep;Park, Chan-Gyung
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.9
    • /
    • pp.1457-1462
    • /
    • 2007
  • A simple and facile sonochemical route was described for the fabrication of diameter-controlled ZnO nanorod arrays on Si wafers. The diameter of ZnO nanorods was controlled by the concentration of zinc cations and hydroxyl anions in aqueous precursor solution. At high concentration of the precursor solution, thick ZnO nanorod arrays were formed. On the contrary, thin ZnO nanorod arrays were formed at low concentration of the precursor solution. The average diameter of ZnO nanorods varies from 40 to 200 nm. ZnO nanorod arrays with sharp tip were also fabricated by the step-by-step decrease in precursor solution concentration. The crystal structure and optical characteristics of ZnO nanorods were investigated by transmission electron microscopy, X-ray diffraction, and photoluminescence spectroscopy. Growth mechanism of ZnO nanorod arrays was also proposed.

Sonochemical Synthesis, Thermal Studies and X-ray Structure of Precursor [Zr(acac)3(H2O)2]Cl for Deposition of Thin Film of ZrO2 by Ultrasonic Aerosol Assisted Chemical Vapour Deposition

  • Hussain, Muzammil;Mazhar, Muhammad;Rauf, Muhammad Khawar;Ebihara, Masahiro;Hussain, Tajammal
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.1
    • /
    • pp.92-96
    • /
    • 2009
  • A new precursor [$Zr(acac)_{3}(H_{2}O)_{2}$] was synthesized by Sonochemical technique and used to deposit thin $ZrO_{2}$ film on quartz and ceramic substrate via ultrasonic aerosol assisted chemical vapour deposition (UAACVD) at 300 ${^{\circ}C}$ in oxygen environment followed by annealing of the sample for 2-3 minutes at 500 ${^{\circ}C}$ in nitrogen ambient. The molecular structure of the precursor determined by single crystal X-ray analysis revealed that the molecules are linked through intermolecular hydrogen bonds forming pseudo six and eight membered rings. DSC and TGA/FTIR techniques were used to determine thermal behavior and decomposition temperature of the precursor and nature of evolved gas products. The optical measurement of annealed $ZrO_{2}$ film with tetragonal phase shows optical energy band gap of 5.01 eV. The particle size, morphology, surface structure and composition of deposited films were investigated by XRD, SEM and EDX.

The Synthesis of CuInS2 Nanoparticles by a Simple Sonochemical Method

  • Park, Jae-Young;Park, Jong-Pil;Hwang, Cha-Hwan;Kim, Ji-Eon;Choi, Myoung-Ho;Ok, Kang-Min;Kwak, Ho-Young;Shim, Il-Wun
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.11
    • /
    • pp.2713-2716
    • /
    • 2009
  • $CuInS_{2}$ nanoparticles were synthesized by a simple sonochemical method; First, Cu nanoparticles were prepared from $CuInS_{2}$ in methanol solution by a one pot reaction through the sonochemistry under multibubble sonoluminescence (MBSL) conditions. Second, the resulting Cu nanoparticles were treated with $InCl_3{\cdot}4H_2O$ and $CH_3CSNH_2$ (thioacetamide) at the same MBSL conditions to synthesize $In_2S_3$-coated Cu nanoparticles in methanol solution. Then, they were transformed into $CuInS_{2}$ (CIS) nanoparticles of 20 $\sim$ 40 nm size in diameter by thermal heating at 300 ${^{\circ}C}$ for 2 hr. The prepared CIS nanoparticles, of which band gap is 1.44 eV, were investigated by X-ray diffractometer, UV-Vis spectrophotometer, inductively coupled plasma spectrometer, and high resolution-transmission electron microscope.

Sonochemical Reaction of Fullerene Oxides, [C70(O)n](n≥1) with Aromatic Amines (방향족 아민 화합물과 풀러렌 산화물의 [C70(O)n](n≥1)의 초음파 화학 반응)

  • Ko, Weon-Bae;Park, Byoung-Eun;Lee, Young-Min
    • Elastomers and Composites
    • /
    • v.43 no.1
    • /
    • pp.31-38
    • /
    • 2008
  • Sonochemical reaction of fullerene oxides, $[C_{70}(O)_n](n\geq1)$ with several aromatic amines such as 4-nitroaniline, 3-nitroaniline, and 4-isopropylaniline, in the presence of $FeCl_3$ were investigated under ultrasonic irradiation. This method is applicable to a wide variety of aromatic amines especially ring deactivated, to afford the corresponding cleavage products under mild conditions. The aminated fullerenes were confirmed by MALDI-TOF-MS and UV-vis spectra.

Sonochemical Synthesis and Photocatalytic Characterization of ZnO Nanoparticles (초음파 방법을 이용한 ZnO 나노입자 합성 및 광촉매 특성 연구)

  • Kim, Min-Seon;Kim, Jae-Uk;Yoo, Jeong-Yeol;Kim, Jong-Gyu
    • Journal of the Korean Chemical Society
    • /
    • v.60 no.1
    • /
    • pp.34-38
    • /
    • 2016
  • In this paper, zinc oxide nanoparticles (ZnO NPs) were synthesized using the sonochemical method, where equimolar amounts of zinc acetate dehydrate and sodium hydroxide were separately dissolved in deionized water, and then mixed for 30 min under magnetic stirring. The resultant white gel was sonicated for 60, 120, 180, 240, and 360 min with magnetic stirring. The obtained precipitates were centrifuged, repeatedly washed with ethanol to remove ionic impurities, and dried at 50 ℃ for 24 h. The formation of pure NPs was confirmed by X-ray diffraction, and their crystallinity and crystal phases were analyzed as well. Structural investigation was carried out by field-emission scanning electron microscopy (FE-SEM). The photocatalysis behavior of the ZnO NPs was investigated in a dark room under UV irradiation, using Rhodamine B. Spherical, rod, and flower-like ZnO NPs could be obtained by adjusting the sonication time, as observed by FE-SEM. The flower-like ZnO NPs exhibited excellent photocatalytic activity.

Study on Antibacterial Activity of Ag Nanometal-deposited TiO2 Prepared by Sonochemical Reduction Method (초음파환원법에 의해 제조된 Ag-TiO2의 항균 활성도 고찰)

  • Jung, Hye Yeon;Lee, Sang-Wha
    • Applied Chemistry for Engineering
    • /
    • v.25 no.1
    • /
    • pp.84-89
    • /
    • 2014
  • In this work, Ag-$TiO_2$ nanocomposites were prepared via the sonochemical deposition of Ag nanometals on $TiO_2$ nanoparticles. The size of deposited Ag nanometals was ranged in 1~3 nm and the number of Ag nanometals deposited on $TiO_2$ increased in proportion to the dosage amounts of Ag precursors. As-prepared Ag-$TiO_2$ was loaded on the sterilized agar plate together with an aliquot volume of diluted E-coli, followed by 30 min irradiation of the solar simulated light ($600{\sim}1800{\mu}w/cm^2$). Finally, the agar plate was incubated for 24 h at $37^{\circ}C$ and the number of survived colonies were counted. It was experimentally confirmed that Ag-$TiO_2$ exhibited the higher antimicrobial activity than that of pure $TiO_2$, based on measuring the colony number of control sample. The survived colony numbers on the agar plate decreased with the increase of dosage amounts of Ag-$TiO_2$ and the irradiated intensity of solar simulated light for 30 min before incubating. The increase of Ag nanometal doposition induced the progressive enhancement of antimicrobial activity, but rather reduced the photocatalytic activity of Ag-$TiO_2$ probably due to the excessive presence of Ag nanometals on $TiO_2$ matrix.