• Title/Summary/Keyword: Sonocatalyst

Search Result 3, Processing Time 0.017 seconds

Optimization of Sonocatalytic Orange II Degradation on MoS2 Nanoparticles using Response Surface Methodology

  • Jiulong Li;Jeong Won Ko;Weon Bae Ko
    • Elastomers and Composites
    • /
    • v.58 no.4
    • /
    • pp.191-200
    • /
    • 2023
  • In this study, MoS2 nanoparticles were synthesized and analyzed through powder X-ray diffraction, Raman, ultraviolet-visible, and X-ray photoelectron spectroscopies. The surface morphologies of the as-synthesized MoS2 nanoparticles were investigated through scanning and transmission electron microscopies. The sonocatalytic activity of the MoS2 nanoparticles toward Orange II removal was evaluated by utilizing a Box-Behnken design for response surface methodology in the experimental design. The sonocatalyst dosage, Orange II dye concentration, and ultrasound treatment time were optimized to be 0.49 g/L, 5 mg/L, and 150 min, respectively. The maximum efficiency of Orange II degradation on MoS2 nanoparticles was achieved, with a final average value of 82.93%. Further, the results of a kinetics study on sonocatalytic Orange II degradation demonstrated that the process fits well with a pseudo-first-order kinetic model.

Sonocatalytic Degradation of Rhodamine B in the Presence of TiO2 Nanoparticles by Loading WO3

  • Meng, Ze-Da;Sarkar, Sourav;Zhu, Lei;Ullah, Kefayat;Ye, Shu;Oh, Won-Chun
    • Korean Journal of Materials Research
    • /
    • v.24 no.1
    • /
    • pp.6-12
    • /
    • 2014
  • In the present work, $WO_3$ and $WO_3-TiO_2$ were prepared by the chemical deposition method. Structural variations, surface state and elemental compositions were investigated for preparation of $WO_3-TiO_2$ sonocatalyst. X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDX) and transmission electron microscopy (TEM) were employed for characterization of these new photocatalysts. A rhodamine B (Rh.B) solution under ultrasonic irradiation was used to determine the catalytic activity. Excellent catalytic degradation of an Rh.B solution was observed using the $WO_3-TiO_2$ composites under ultrasonic irradiation. Sonocatalytic degradation is a novel technology of treating wastewater. During the ultrasonic treatment of aqueous solutions sonoluminescence, cavitaties and "hot spot" occurred, leading to the dissociation of water molecules. In case of a $WO_3$ coupled system, a semiconductor coupled with two components has a beneficial role in improving charge separation and enhancing $TiO_2$ response to ultrasonic radiations. In case of the addition of $WO_3$ as new matter, the excited electrons from the $WO_3$ particles are quickly transferred to $TiO_2$ particle, as the conduction band of $WO_3$ is 0.74 eV which is -0.5 eV more than that of $TiO_2$. This transfer of charge should enhance the oxidation of the adsorbed organic substrate. The result shows that the photocatalytic performance of $TiO_2$ nanoparticles was improved by loading $WO_3$.

Effect of Frequency and Fixed Solid Catalyst for Radical Production in Sonocatalysis (초음파 촉매 공정에서 주파수와 고정된 고체 촉매가 라디칼 생성에 미치는 영향)

  • Cho, Eunju;Na, Seungmin;Lee, Seban;Khim, Jeehyeong
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.2
    • /
    • pp.219-223
    • /
    • 2012
  • The fixed solid catalysts such as glass bead, steel mesh, and $TiO_2$ coated ceramic bead were used to investigate effect of radical production at different frequencies. The radical production rate at 300 kHz was faster than that at 35 kHz without solid, but the tendency was changed with the presence of glass bead. The presence of glass beads create non-continuous points between the solid and liquid phases leading to increased formation of cavitation bubbles. However, the radical production decreased when steel mesh was used at 35 kHz although the surface area of contact with liquid was same when glass bead was used. Hence the solid catalyst did not always enhance the radical production. The radical production using $TiO_2$ coated ceramic bead was dramatically increased at 35 kHz due to the breakage of $TiO_2$ coated ceramic bead. Therefore the radical productions at 300 kHz using fixed solid catalysts generally increased while at 35 kHz the results fluctuated according to the experimental conditions.