• Title/Summary/Keyword: Sonic

Search Result 597, Processing Time 0.03 seconds

Simulation of material failure behavior under different loading rates using molecular dynamics

  • Kim, Kunhwi;Lim, Jihoon;Kim, Juwhan;Lim, Yun Mook
    • Structural Engineering and Mechanics
    • /
    • v.30 no.2
    • /
    • pp.177-190
    • /
    • 2008
  • Material failure behavior is generally dependent on loading rate. Especially in brittle and quasi-brittle materials, rate dependent material behavior can be significant. Empirical formulations are often used to predict the rate dependency, but such methods depend on extensive experimental works and are limited by practical constraints of physical testing. Numerical simulation can be an effective means for extracting knowledge about rate dependent behavior and for complementing the results obtained by testing. In this paper, the failure behavior of a brittle material under different loading rates is simulated by molecular dynamics analysis. A notched specimen is modeled by sub-million particles with a normalization scheme. Lennard-Jones potential is used to describe the interparticle force. Numerical simulations are performed with six different loading rates in a direct tensile test, where the loading velocity is normalized to the ratio of the pseudo-sonic speed. As a consequence, dynamic features are achieved from the numerical experiments. Remarkable failure characteristics, such as crack surface interaction/crack arrest, branching, and void nucleation, vary in case of the six loading cases. These characteristics are interpreted by the energy concept approach. This study provides insight into the change in dynamic failure mechanism under different loading rates.

Numerical Analysis for Supersonic Off-Design Turbulent Jet Flow (초음속 불완전 팽창 난류 제트 유동에 관한 수치적 연구)

  • Kim Jae-Soo
    • Journal of computational fluids engineering
    • /
    • v.4 no.2
    • /
    • pp.57-66
    • /
    • 1999
  • Numerical Analysis has been done for the supersonic off-design jet flow due to the pressure difference between the jet and the ambient fluid. The difference of pressure generates an oblique shock or an expansion wave at the nozzle exit. The waves reflect repeatedly on the center axis and the sonic surface in the shear layer. The pressure difference is resolved across these reflected waves. In this paper, the axi-symmetric Navier-Stokes equation has been used with the κ-ε turbulence model. The second order TVD scheme with flux limiters, based on the flux vector split with the smooth eigenvalue split, has been used to capture internal shocks and other discontinuities. Numerical calculations have been done to analyze the off-design jet flow due to the pressure difference. The variation of pressure along the flow axis is compared with an experimental result and other numerical result. The characteristics of the interaction between the shock cell and the turbulence mixing layer have been analyzed.

  • PDF

Experimental study of compression waves propagating porous walls (다공벽을 전파하는 압축파의 실험적 연구)

  • Kim, Hui-Dong;Setoguchi, Toshiaki
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.12
    • /
    • pp.4036-4043
    • /
    • 1996
  • When a high-speed railway train enters a tunnel, a compression wave is generated ahead of the train and propagates along the tunnel, compressing and accelerating the rest air in front of the wave. At the exit of the tunnel, an impulsive wave is emitted outward toward the surrounding, which causes a positive impulsive noise like a kind of sonic boom produced by a supersonic aircraft. With the advent of high-speed train, such an impulsive noise can be large enough to cause the noise problem, unless some attempts are made to alleviate its pressure levels. In the purpose of the impulsive noise reduction, the present study tested the effect of porous walls on the compression wave propagating into a model tunnel. Experimental results were obtained using a shock tube with an open end. The results showed that the cavity/porous wall is very effective for the compression wave with a large nonlinear effect. The porosity of 30% is most effective for attenuation and pressure gradient reduction of the compression wave front. Also the impulsive noise reduction increases with increasing the length and height of the cavity, compared with the tunnel equivalent diameter.

SUPERSONIC INLET BUZZ CONTROL USING CORRECTED BLEED MODEL (보정한 Bleed 모델을 이용한 초음속 흡입구 버즈 제어)

  • Kwak, E.;Lee, S.
    • Journal of computational fluids engineering
    • /
    • v.18 no.4
    • /
    • pp.82-89
    • /
    • 2013
  • Database of a bleed model has been corrected and numerical simulations have been performed to control buzz using the corrected bleed model. The existing bleed model, which was developed as a part of a boundary condition model for porous bleed walls, underestimates bleed flow rate because flow accelerations near the bleed regions are ignored. Also, it overpredicts the sonic flow coefficient when the bleed plenum pressure ratio is high. To correct these problems, and to enhance the performance of the bleed model, the database has been corrected using CFD simulations to compensate for the flow acceleration near the bleed region. Futhermore, the database of the bleed model is extended with the second order extrapolation. The corrected bleed model is validated with numerical simulations of a shock-boundary layer interaction problem over a solid wall with a bleed region. Using the corrected bleed model, numerical simulations of supersonic inlet buzz are performed to find the deterrent effects of bleed on buzz. The results reveal that bleed is effective to prevent buzz and to enhance the inlet performance.

User Identification Method based on Sonic Communication (소닉 커뮤니케이션 기반 사용자 식별 방법 연구)

  • Lim, Yoon-gyu;Seo, Jaehak;Kim, Daecheon;Park, Yechan;Yeom, Sanggil;Choo, Hyunseung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2016.10a
    • /
    • pp.501-502
    • /
    • 2016
  • 최근 스마트기기 사용량이 증가함에 따라 NFC나 Bluetooth 등 다양한 근거리 통신 서비스가 제공되고있다. 그러나 이들 통신방식은 별도의 통신 모듈을 필요로 하는 단점이 있다. 이러한 단점을 해결하기 위해 비가청주파수 대역을 이용한 통신이 연구되고 있다. 비가청주파수 대역은 18kHz~22kHz 사이의 사람에게 들리지 않는 주파수 대역으로 마이크와 스피커만 있으면 비가청주파수 통신이 가능하다. 기존 연구는 특정 사용자를 식별하여 데이터를 보안상 안전하게 전송하는 방식이 없다. 본 논문에서는 통신에 사용되는 두 기기가 본 논문에서 제안한 공유키를 활용하여 3단계의 과정을 거쳐 사용자를 식별하는 방법을 제안한다. 또한 식별 과정에서 만들어진 값은 메시지를 암호화하는데 사용되어 보안을 강화한다. 이 식별 방법은 비가청주파수 통신을 IoT 등 다양한 분야에 활용하는데 사용할 수 있다.

Electroless Ni Plating for Memory Device Metallization Using Ultrasonic Agitation (초음파 교반을 이용한 기억소자 Metallization용 무전해 Ni Plating)

  • 우찬희;우용하;박종완;이원해
    • Journal of the Korean institute of surface engineering
    • /
    • v.27 no.2
    • /
    • pp.109-117
    • /
    • 1994
  • Effect of ultrasonic agitation on the contact properties was studied in Ni electroless plating and Pd activation. P-type Si bare wafers were used as substrate and DMAB was used as reducing agent due to its good electrical properties, solderability and compatibility to substrate. In activation, high density Pd nuclei of small size were formed during ultra-sonic agitation compared to that of no stirring. In electroless plating, the plating rate was enhanced by 30∼90% by using ultrasonic agitation. In elecrtoless plating, inhibitor is the most effective additives in ultrasonic agitation. In this experi-ment, thiourea was used as inhibitor. The less the amount of the inhibitor, the more ultrasonic agitation efficiency. It is confirmed by SEM that Ni-B films formed by ultrasonic were coarser, less porous, and denser than those of no stirring. In ultrasonic agitation, boron content of the films was more than those of no stirring. In this case, the more DMAB concentration, the higher the temperature, the less pH, the more boron content. Resistivity of the films formed by ultrasonic agitation was higher than that of no strirring. As the content of boron was increased, the resistivity of the films was increased exponentially.

  • PDF

Evaluation of Life Span for Al2O3 Nano Tube Formed by Anodizing with Current Density

  • Lee, Seung-Jun;Kim, Seong-Jong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.148-148
    • /
    • 2017
  • Surface modification is a type of mechanical manipulation skills to achieve extensive aims including corrosion control, exterior appearance, abrasion resistance, electrical insulation and electrical conductivity of substrate materials by generating a protective surface using electrical, physical and chemical treatment on the surface of parts made from metallic materials. Such surface modification includes plating, anodizing, chemical conversion treatment, painting, lining, coating and surface hardening; this study conducted cavitation experiment to assess improvement of durability using anodizing. In order to observe surface characteristics with applied current density, the electrolyte temperature, concentration was maintained at constant condition. To prevent hindrance of stable growth of oxide layer due to local temperature increase during the experiment, stirring was maintained at constant speed. In addition, using galvanostatic method, it was maintained at processing time of 40minutes for 10 to $30mA/cm^2$. The cavitation experiment was carried out with an ultra sonic vibratory apparatus using piezo-electric effect with modified ASTM-G32. The peak-to-peak amplitude was $30{\mu}m$ and the distance between the horn tip and specimen was 1mm. The specimen after the experiment was cleaned in an ultrasonic bath, dried in a vacuum oven for more than 24 hours, and weighed with an electric balance. The surface damage morphology was observed with 3D analysis microscope. As a result of the study, differences were observed surface hardness and anti-cavitation characteristics depending on the development of oxide film with the anodizing process time.

  • PDF

Shock Associated Jet Noise Reduction by a Microjet on the Centerline of the Main Jet (노즐 중심에 설치한 마이크로 제트에 의한 충격파 관련소음 저감)

  • 김진화;유정열
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.92-97
    • /
    • 2003
  • By using a centerbody injection, an effort to reduce shock assoicated noise is made in an underexpanded sonic nozzle with an exit diameter of 10mm. The centerbody or micro nozzle, aligned with the axis of the main jet has an o.d. of 2mm and i.d. of 1.5mm. When measured at 90$^{\circ}$ relative to the main jet the farfield noise spectra showed that the screech tones and broadband shock associated noise can be significantly reduced simply by varying the length of the centerbody and/or mass fraction of the microjet. The maximum reduction in overall sound pressure level (OASPL) was as much as 9 and 4 ㏈ at fully expanded jet Mach numbers Mi of 1.3 and 1.5, respectively, when the length of the centerbody was varied from 0 to 4 main nozzle diameters without blowing. With the aid of the blowing, the maximum reduction in OASPL increased to 12 and 7 ㏈ at M$\sub$j/=1.3 and 1.5, respectively. The impact pressure field in the main jet plume strongly suggested that the reduced periodic pressure distribution in the shear layers and/or centerline is responsible for the reduced screech and broadband shock associated noise. Therefore, the steady blowing by a micro centerbody is a promising technique for shock noise reduction in a supersonic jet.

  • PDF

Inspection of Underground Slurry Wall for LNG Storage Tank (LNG 저장 탱크 지중연속벽 품질시험)

  • Kim, Young-H.;Jo, Churl-Hyun;Lim, Seong-Jin
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.2
    • /
    • pp.107-115
    • /
    • 2003
  • Nondestructive testing was carried out in order to evaluate the structural integrity and construction quality of the slurry wall of the underground LNG storage tank. 9 test points were selected, and the wall thickness, rebar spacing, and compressive strength of the slurry wall were evaluated by stress wave impact-resonance method, GPR, sonic velocity, and rebound testing, respectively. As results, the wall thickness, rebar sparing and estimated compressive strength satisfy the design criteria.

A Study on tole Improvement of the Slurry Dispersibility in CMP (CMP 슬러리의 분산성 향상에 관한 연구)

  • Cho, Sung-Hwan;Kim, Hyoung-Jae;Kim, Ho-Youn;Kim, Heon-Deok;Seo, Kyoung-Jun;Jeong, Hae-Do
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.10
    • /
    • pp.1535-1540
    • /
    • 2001
  • This study presents the possibility of scratch reduction on wafer in CMP by applying the ultrasonic and megasonic energy into the slurry which might contain large abrasive particles. Experiments were conducted to verify the dispersion ability of agglomerated particles by applying ultrasonic, megasonic waves and analyze the particle distribution of used slurry in case, of sonic energy assisted or none. And the dispersion stability of megasonic waves was investigated through the experiment of stability of the dispersed slurry, Finally, to confirm that the distribution of particles in slurry by ultrasonic waves was actually related to scratches on wafer when CMP was done, tungsten blanket wafer was processed, by CMP to compare and investigate scratches on wafer.