• 제목/요약/키워드: Sonar target classification

검색결과 38건 처리시간 0.021초

실제 해상 실험 데이터를 이용한 능동소나 표적/비표적 식별 (Active Sonar Target/Nontarget Classification Using Real Sea-trial Data)

  • 석종원
    • 한국멀티미디어학회논문지
    • /
    • 제20권10호
    • /
    • pp.1637-1645
    • /
    • 2017
  • Target/Nontarget classification can be divided into the study of shape estimation of the target analysing reflected echo signal and of type classification of the target using acoustical features. In active sonar system, the feature vectors are extracted from the signal reflected from the target, and an classification algorithm is applied to determine whether the received signal is a target or not. However, received sonar signals can be distorted in the underwater environments, and the spatio-temporal characteristics of active sonar signals change according to the aspect of the target. In addition, it is very difficult to collect real sea-trial data for research. In this paper, target/non-target classification were performed using real sea-trial data. Feature vectors are extracted using MFCC(Mel-Frequency Cepstral Coefficients), filterbank energy in the Fourier spectrum and wavelet domain. For the performance verification, classification experiments were performed using backpropagation neural network classifiers.

초음파의 다중반사 특성을 이용한 실내공간에서의 목표물 인식에 관한 연구 (Target classification in indoor environments using multiple reflections of a SONAR sensor)

  • 류동연;박성기;권인소
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.1738-1741
    • /
    • 1997
  • This paper addresses the issue fo target classification and localization with a SONAR for mobiler robot indoor navigation. In particular, multiple refetions of SONAR sound are used actively and interntionally. As for the SONAR sensor, the multiple reflection has been generally considered as one of the noisy phenomena, which is inevitable in the indoor environments. However, these multiple reflections can be a clue for classifying and localizing targets in the indoor environment if those can be controlled and used well. This paper develops a new SONAR sensor module with a reflection plane which can actively create the multiple refection. This paper also intends to suggest a new target classification emthod which uses the multiple refectiions. We approximate the world as being two dimensional and assume that the targets consisting of the indoor environment are pland, corner, and edge. Multiple reflection paths of an acoustic bean by a SONAR are analyzed, by simulations and the patterns of the TOPs (Time Of Flight) and angles of multiple reflections from each target are also analyzed. In addition, a new algorithm for target classification and localization is proposed.

  • PDF

CNN을 이용한 능동 소나 표적/비표적 분류 (Active Sonar Target/Non-target Classification using Convolutional Neural Networks)

  • 김동욱;석종원;배건성
    • 한국멀티미디어학회논문지
    • /
    • 제21권9호
    • /
    • pp.1062-1067
    • /
    • 2018
  • Conventional active sonar technology has relied heavily on the hearing of sonar operator, but recently, many techniques for automatic detection and classification have been studied. In this paper, we extract the image data from the spectrogram of the active sonar signal and classify the extracted data using CNN(convolutional neural networks), which has recently presented excellent performance improvement in the field of pattern recognition. First, we divided entire data set into eight classes depending on the ratio containing the target. Then, experiments were conducted to classify the eight classes data using proposed CNN structure, and the results were analyzed.

수동소나를 이용한 수중물체 자동판별기법 연구 (A Study on the Algorithm for Underwater Target Automatic Classification using the Passive Sonar)

  • 이성은;최수복;노도영
    • 한국군사과학기술학회지
    • /
    • 제3권1호
    • /
    • pp.76-84
    • /
    • 2000
  • As first step of any acoustic defence system, a attacking target warning system needs to be extremely reliable. This means the system must ensure a high probability of target classification together with a very low false alarm rate. In this paper, a algorithms for underwater target automatic classification is available for use in the passive sonar will be presented. In first, we will describe the precise automatic extraction of frequency lines for the detection of acoustic signatures. Also, a neural network and fuzzy based algorithms for target classification will be described. Thus the performances of these algorithms are very good with a high probability of classification.

  • PDF

능동소나 표적 인식을 위한 신호합성 및 특징추출 (Signal Synthesis and Feature Extraction for Active Sonar Target Classification)

  • 어윤;석종원
    • 한국멀티미디어학회논문지
    • /
    • 제18권1호
    • /
    • pp.9-16
    • /
    • 2015
  • Various approaches to process active sonar signals are under study, but there are many problems to be considered. The sonar signals are distorted by the underwater environment, and the spatio-temporal and spectral characteristics of active sonar signals change in accordance with the aspect of the target even though they come from the same one. And it has difficulties in collecting actual underwater data. In this paper, we synthesized active target echoes based on ray tracing algorithm using target model having 3-dimensional highlight distribution. Then, Fractional Fourier transform was applied to synthesized target echoes to extract feature vector. Recognition experiment was performed using probabilistic neural network classifier.

하이라이트 모델을 이용한 능동소나 표적신호의 합성 및 인식 (Synthesis and Classification of Active Sonar Target Signal Using Highlight Model)

  • 김태환;박정현;남종근;이수형;배건성
    • 한국음향학회지
    • /
    • 제28권2호
    • /
    • pp.135-140
    • /
    • 2009
  • 본 논문에서는 하이라이트 모델에 기반하여 능동소나의 표적신호를 합성하고, 합성된 신호를 이용하여 표적인식 실험을 수행하였다. 동일 표적이라도 표적의 자세각에 따라 다양한 형태의 파형을 갖는 신호가 합성되는데, 이에 대한 표적인식 결과를 알아보기 위해서 두 가지 방법으로 실험을 수행하였다. 하나는 고정된 여러 가지 자세각에 대한 표적신호에 대한 인식실험이고, 다른 하나는 임의의 자세각을 가지는 교신에 대만 인식 실험을 수행하였다. 인식실험을 위한 특징 인자로는 합성된 표적신호에 대해 시간영역에서 정합필터 및 포락선 검출을 통해 얻어지는 하이라이트 패턴을 사용하였으며, 패턴인식 기법으로는 다중클래스 SVM과 인공신경망을 사용하였다.

능동소나 스펙트로그램 이미지와 CNN을 사용한 표적/비표적 식별 (Target/non-target classification using active sonar spectrogram image and CNN)

  • 김동욱;석종원;배건성
    • 전기전자학회논문지
    • /
    • 제22권4호
    • /
    • pp.1044-1049
    • /
    • 2018
  • CNN(Convolutional Neural Networks)은 동물의 시각정보처리과정을 모델링한 신경망으로 다양한 분야에서 좋은 성능을 보여주고 있다. 본 논문에서는 CNN을 사용하여 능동소나 신호의 스펙트로그램을 분석하고, 표적과 비표적을 식별하는 연구를 수행하였다. 데이터를 표적이 포함된 비율에 따라 8클래스로 구분하고, CNN의 학습에 사용하였다. 신호의 스펙트로그램을 프레임별로 나누어 입력으로 사용한 결과, 표적신호의 위치에서만 표적신호에 해당하는 7개 클래스의 식별 결과가 순차적으로 나타나는 특성을 사용하여 표적과 비표적을 식별해낼 수 있었다.

SVM 커널함수의 파라미터 값에 따른 능동소나 표적신호의 식별 성능 분석 (Analysis of target classification performances of active sonar returns depending on parameter values of SVM kernel functions)

  • 박정현;황찬식;배건성
    • 한국정보통신학회논문지
    • /
    • 제17권5호
    • /
    • pp.1083-1088
    • /
    • 2013
  • 수중 천해 환경에서 능동소나의 반향 신호로 기뢰를 탐지 및 식별하는 일은 복잡한 해양 환경의 영향으로 어려운 문제이다. SVM은 패턴인식 문제에서 최적의 해를 제공하는 이진 분류기이다. 본 논문에서는 SVM을 이용하여 능동소나의 반향 데이터로 기뢰와 같은 금속 물체와 바위를 식별하는 실험을 수행하면서, SVM에 사용되는 커널함수의 파라미터 값의 변화에 따른 식별 성능을 분석하고 제시하였다.

수동 소나 표적의 식별을 위한 지능형 특징정보 추출 및 스코어링 알고리즘 (Intelligent Feature Extraction and Scoring Algorithm for Classification of Passive Sonar Target)

  • 김현식
    • 한국지능시스템학회논문지
    • /
    • 제19권5호
    • /
    • pp.629-634
    • /
    • 2009
  • 실시간 시스템 적용에 있어서, 수동 소나 표적의 식별을 위한 특징정보 추출 및 스코어링 알고리즘은 다음과 같은 문제점들을 가지고 있다. 즉, 주파수 스펙트럼으로부터 PSR(Propeller Shaft Rate) 및 BR(Blade rate) 등의 특징정보를 실시간으로 구별하는 것은 매우 어렵기 때문에 정확하고 효율적인 특징정보 추출(extraction)법을 요구한다. 또한, 추출된 특징정보들로 구성된 식별 DB(DataBase)는 잡음 및 불완전한 구성을 갖기 때문에 강인하고 효과적인 특징정보 스코어링(scoring)법을 요구한다. 나아가, 구조와 파라메터에 있어서 용이한 설계 절차를 요구한다. 이러한 문제들을 해결하기 위해서 진화 전략(ES : Evolution Strategy) 및 퍼지(fuzzy) 이론을 이용하는 지능형 특징정보 추출 및 스코어링 알고리즘이 제안되었다. 제안된 알고리즘의 성능을 검증하기 위해서는 수동 소나 표적의 실시간 식별이 수행되었다. 시뮬레이션 결과는 제안된 알고리즘이 실시간 시스템 적용에서 존재하는 문제점들을 효과적으로 해결할 수 있음을 보여준다.

능동소나 표적인식을 위한 시뮬레이터 (Simulator for Active Sonar Target Recognition)

  • 석종원;김태환;배건성
    • 한국정보통신학회논문지
    • /
    • 제16권10호
    • /
    • pp.2137-2142
    • /
    • 2012
  • 수중환경 하에서 표적을 탐지하고 식별하는 문제는 군사적인 목적은 물론 비군사적 목적으로도 많은 연구가 수행되어 왔다. 수중환경에서의 수중음향 신호가 시간 공간적으로 특성이 변화하며 천해 다중경로 환경을 반영하는 복잡한 특성을 보이는 점으로 인해 능동 표적인식 기술은 매우 어려운 기술로 여겨져 왔다. 또한 실제 데이터 수집의 어려움이 따르게 된다. 본 논문에서는 수중환경 하에서 능동 표적신호를 합성, 특징추출 및 표적식별을 수행할 수 있는 시뮬레이터를 구현하였다. 표적신호의 합성에는 하이라이트 모델과 3차원 모델을 사용하였으며, 표적신호의 식별을 위해서는 다중각도에 기반한 은닉 마코프모델을 사용하였다.