• Title/Summary/Keyword: Sonar signal Processing

Search Result 86, Processing Time 0.021 seconds

Estimation of Phase Variance of Acoustic Signals Depending on Turbulence Strength Near the Mukho Port in the East Sea of Korea (동해 묵호항 근처에서의 난류세기인자에 따른 음향수신신호의 위상분산 추정)

  • Kim, Jung-Hun;Bok, Tae-Hoon;Paeng, Dong-Guk;Shim, Tae-Bo;Kim, Young-Kyu;Park, Joung-Soo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.4
    • /
    • pp.328-335
    • /
    • 2009
  • Phase variance of the acoustic signals has to be investigated with the research of the medium, because the phase of the acoustic signals carries the information of the medium. The phase compensation of the received signals is required for the signal processing of SAS (Synthetic Aperture Sonar) and underwater communication. In this paper, the phase variance of the acoustic signals was studied depending on the micro-scale-turbulence of ocean. The turbulence strength of the locally isotropic and homogeneous turbulence was calculated, and the phase variance affected by the turbulence strength was computed along the ray paths. The CTD and ADCP data were acquired from a buoy system near the Mukho port in the East Sea of Korea and the ray paths were calculated by the Bellhop algorithm. As a result, the turbulence strength was mainly determined by the variation of temperature and flow speed, changing the phase variance of the received signals. Hence, we thought the phase variance should be considered in the sonar operating system.

Target Emphasis Algorithm in Image for Underwater Acoustic Signal Using Weighted Map (가중치 맵을 이용한 수중 음향 신호 영상에서의 표적 강화 알고리즘)

  • Joo, Jae-Heum
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.11 no.3
    • /
    • pp.203-208
    • /
    • 2010
  • In this paper, we convert underwater acoustic signal made by sonar system into digital image. We propose the algorithm that detects target candidate and emphasizes information of target introducing image processing technique for the digital image. The process detecting underwater target estimates background noise in underwater acoustic signal changing irregularly, recomposes it. and eliminates background from original image. Therefore, it generates initial target group. Also, it generates weighted map through proceeding doppler information, ensures information for target candidate through filtering using weighted map for image eliminated background noise, and decides the target candidate area in the single frame. In this paper, we verified that proposed algorithm almost had eliminated the noise generated irregularly in underwater acoustic signal made by simulation, targets had been displayed more surely in the image of underwater acoustic signal through filtering and process of target detection.

Parametric Array Sonar System Based on Maximum Likelihood Detection (최대우도 검파에 기반한 파라메트릭 어레이 소나 시스템)

  • Han, Jeong-Hee;Lee, Chong-Hyun;Paeng, Dong-Guk;Bae, Jin-Ho;Kim, Won-Ho
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.1
    • /
    • pp.25-31
    • /
    • 2011
  • In the underwater communications, transmitted acoustic signal is corrupted by interference from multipath. A parametric array transducer is capable of radiating a narrow beam with very low sidelobe levels. In certain cases, the parametric array transducer can help the multipath problem. To improve the performance of the underwater communications, the statistical signal processing methods will be required. In the paper, the communication system using a parametric array transducer was demonstrated. To detect the received signal of the communication system based on the on-off keying, the maximum likelihood method using averaged signal for a particular window size is used. The communication system has GUI using LebVIEW which allows the user to change the parameter. The GUI can also be easily modified based on the characteristics of a parametric array transducer. The implemented system can effectively evaluate the performance of the parametric array transducer.

Multiband Enhancement for DEMON Processing Algorithms (대역 분할 처리를 통한 데몬 처리 성능 향상 기법)

  • Cheong, Myoung Jun;Hwang, Soo Bok;Lee, Seung Woo;Kim, Jin Seok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.32 no.2
    • /
    • pp.138-146
    • /
    • 2013
  • Passive sonars employ DEMON (Detection of Envelope Modulation on Noise) processing to extract propeller information from the radiated noise of underwater targets. Conventional DEMON processing improves SNR(Signal to Noise Ratio) characteristic by Welch method. The conventional Welch method overlaps several different time domain DEMON outputs to reduce the variance. However, the conventional methods have high computational complexity to get high SNR with correlated acoustic signals. In this paper, we propose new DEMON processing method that divides acoustic signal into several frequency bands before DEMON processing and averages each DEMON outputs. Therefore, the proposed method gathers independent acoustic signal faster than conventional method with low computational complexity. We prove the performance of the proposed method with mathematical analysis and computer simulations.

Underwater Target Information Estimation using Proximity Sensor (근접센서를 이용한 수중 표적 정보 추정기법)

  • Kim, JungHoon;Yoon, KyungSik;Seo, IkSu;Lee, KyunKyung
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.5
    • /
    • pp.174-180
    • /
    • 2015
  • In this paper, we propose the passive sonar signal processing technique for estimating target information using proximity sensor. This algorithm is performed by single sensor which is constituted underwater sensor network and has a hierarchical structure. The estimated parameter is the velocity, the depth, the distance and bearing at CPA situations and we can improve the accuracy of signal processing techniques through having a hierarchical structure. We verify the performance of the proposed method by computer simulation and then we check the result that 20% error can be occurred in maximum detectable range. We also confirm that proposed method has the reliability in the actual sea environment through the sea experiment.

A Study on the Low-frequency Active Echo Reduction Technology for Reducing Underwater Target Echo Signal (수중 표적 신호 방해를 위한 저주파 능동 반향음 감소 기술 연구)

  • Kim, Jaepil;Ji, Youna;Park, Young-cheol;Noh, Eunghwy;Ohm, Won-Suk;Choi, Yonggyu;Kim, Daeup;Seo, Youngsoo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.27 no.1
    • /
    • pp.43-50
    • /
    • 2017
  • Acoustic tiles are typically installed on the surface of pressure vessels in submarines to minimize echoes based on the ship's own noise and active sonar. In this study, we studied low frequency active echo reduction techniques to reduce underwater target echo signals. Active control algorithms using tile type projectors and FxLMS logic have been developed and the projectors have been installed in the assumed hull structure. The effectiveness of projectors and control algorithms has been evaluated in time and frequency domain analysis through experiments in the tank.

An Adaptive Microphone Array with Linear Phase Response (선형 위상 특성을 갖는 적응 마이크로폰 어레이)

  • Kang, Hong-Gu;Youn, Dae-Hui;Cha, Il-Hwan
    • The Journal of the Acoustical Society of Korea
    • /
    • v.11 no.3
    • /
    • pp.53-60
    • /
    • 1992
  • Many adaptive beamforming methods have been studied for interference cancellation and speech signal enhancement in telephone conference and auditorium. Main aspect of adaptive beamforming methods for speech signal processing is different from radar, sonar and seismic signal processing because desire output signal should be apt to the human ear. Considering that phase of speech is quite insensible to the human ear, Sondhi proposed a nonlinear constrained optimization technique whose constraint was on the magnitude transfer function from the source to the output. In real environment the phase response of the speech signal affects the human auditorium system. So it is desirable to design linear phase system. In this paper, linear phase beamformer is proposed and sample processing algorithm is also proposed for real time consideration Simulation results show that the proposed algorithm yields more consistent beam patterns and deep nulls to the noise direction than Sondhi's.

  • PDF

Study on Hidden Period Estimation in Propeller Noise by Applying Compressed Sensing to Auto-Correlation and Filter-Bank Structure (압축 센싱 기법을 자기상관 필터뱅크 방식에 적용한 광대역 프로펠러 소음 추정 기법 연구)

  • Lim, Jun-Seok;Pyeon, Yong-Guk;Hong, Woo-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.12
    • /
    • pp.2476-2484
    • /
    • 2015
  • Narrow band signal estimation and broad band signal estimation can be used to detect the ship-radiated noise. The broad band signal estimation method to detect the ship-radiated noise is called DEMON (Detection of Envelop Modulation On Noise). This paper proposes a new DEMON algorithm applying compressed sensing algorithm to filter bank and autocorrelation. We show the proposed algorithm estimates the hidden period in the wide band signal better than the conventional DEMON algorithm and the recently proposed filter-bank based DEMON algorithm. Especially we show that the proposed algorithm needs shorter data length than the conventional DEMON algorithm.

Hidden Period Estimation in the Broad Band Propeller Noise Using Auto-Correlation and Filter-Bank Structure (자기상관과 필터뱅크 방식을 적용한 광대역 프로펠러 소음 추정 기법 연구)

  • Lim, Jun-Seok;Hong, Woo-Young;Pyeon, Yong-Guk
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39B no.8
    • /
    • pp.538-543
    • /
    • 2014
  • Narrow band signal estimation and broad band signal estimation can be used to detect the ship-radiated noise. The broad band signal estimation method to detect the ship-radiated noise is called DEMON (Detection of Envelop Modulation On Noise). This paper proposes a new DEMON algorithm using filter bank and autocorrelation. We show the proposed algorithm estimates the hidden period in the wide band signal better than the conventional DEMON algorithm and the recently proposed filter-bank based DEMON algorithm.

An analysis of the moving speed effect of the receiver array on the passive synthetic aperture signal processing (수동형 합성개구 신호처리에서 수신 배열 센서의 이동 속도에 대한 영향 분석)

  • Kim, Sea-Moon;Byun, Sung-Hoon;Oh, Sehyun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.35 no.2
    • /
    • pp.125-133
    • /
    • 2016
  • In order to obtain high-resolution seafloor images, research on SA (Synthetic Aperture) processing and the development of related underwater systems have been performed in many countries. Recently the SA processing is also recognized as an important technique in Korea and researchers started related basic study. However, most previous studies ignored the Doppler effect by a moving receiver array. In this paper reconstructed SAS (Synthetic Aperture Sonar) images and position errors are analyzed according to the speed of a moving array for understanding its moving effect on the SAS images. In the analysis the spatial frequency domain interpolation algorithm is used. The results show that as the moving speed of the array increases the estimated position error also increases and image distortion gets worse when we do not consider the array motion. However, if the compensated receiver signals considering the array motion are used the position error and image distortion can be eliminated. In conclusion a signal processing scheme which compensates the Doppler effect is necessary especially in the condition where the array speed is over 1 m/s.