• Title/Summary/Keyword: Somatic cell

Search Result 770, Processing Time 0.029 seconds

In vitro maturation using αMEM with reduced NaCl enhances maturation and developmental competence of pig oocytes after somatic cell nuclear transfer

  • Lee, Yongjin;Lee, Joohyeong;Hyun, Sang-Hwan;Lee, Geun-Shik;Lee, Eunsong
    • Journal of Veterinary Science
    • /
    • v.23 no.2
    • /
    • pp.31.1-31.13
    • /
    • 2022
  • Background: Compared to medium containing 108 mM sodium chloride (NaCl), in vitro maturation (IVM) using a simple medium with reduced (61.6 mM) NaCl increases the cytoplasmic maturation and embryonic development of pig oocytes. Objectives: This study determines the effect of a complex medium containing reduced NaCl on the IVM and embryonic development of pig oocytes. Methods: Pig oocytes were matured in Minimum Essential Medium Eagle-alpha modification (αMEM) supplemented with 61.6 (61αMEM) or 108 (108αMEM) mM NaCl, and containing polyvinyl alcohol (PVA) (αMEMP) or pig follicular fluid (PFF) (αMEMF). Medium-199 (M199) served as the control for conventional IVM. Cumulus cell expansion, nuclear maturation, intra-oocyte glutathione (GSH) contents, size of perivitelline space (PVS), and embryonic development after parthenogenesis (PA) and somatic cell nuclear transfer (SCNT) were evaluated after IVM. Results: Regardless of PVA or PFF supplementation, oocytes matured in 61αMEM showed increased intra-oocyte GSH contents and width of PVS (p < 0.05), as well as increased blastocyst formation (p < 0.05) after PA and SCNT, as compared to oocytes matured in 108αMEMP and M199. Under conditions of PFF-enriched αMEM, SCNT oocytes matured in 61αMEMF showed higher blastocyst formation (p < 0.05), compared to maturation in 108αMEMF and M199, whereas PA cultured oocytes showed no significant difference. Conclusions: IVM in αMEM supplemented with reduced NaCl (61.6 mM) enhances the embryonic developmental competence subsequent to PA and SCNT, which attributes toward improved oocyte maturation.

Expression of Major Histocompatibility Complex during Neuronal Differentiation of Somatic Cell Nuclear Transfer-Human Embryonic Stem Cells

  • Jin Saem Lee;Jeoung Eun Lee;Shin-Hye Yu;Taehoon Chun;Mi-Yoon Chang;Dong Ryul Lee;Chang-Hwan Park
    • International Journal of Stem Cells
    • /
    • v.17 no.1
    • /
    • pp.59-69
    • /
    • 2024
  • Human pluripotent stem cells (hPSCs) such as human embryonic stem cells (hESCs), induced pluripotent stem cells, and somatic cell nuclear transfer (SCNT)-hESCs can permanently self-renew while maintaining their capacity to differentiate into any type of somatic cells, thereby serving as an important cell source for cell therapy. However, there are persistent challenges in the application of hPSCs in clinical trials, where one of the most significant is graft rejection by the patient immune system in response to human leukocyte antigen (HLA) mismatch when transplants are obtained from an allogeneic (non-self) cell source. Homozygous SCNT-hESCs (homo-SCNT-hESCs) were used to simplify the clinical application and to reduce HLA mismatch. Here, we present a xeno-free protocol that confirms the efficient generation of neural precursor cells in hPSCs and also the differentiation of dopaminergic neurons. Additionally, there was no difference when comparing the HLA expression patterns of hESC, homo-SCNT-hESCs and hetero-SCNT-hESCs. We propose that there are no differences in the differentiation capacity and HLA expression among hPSCs that can be cultured in vitro. Thus, it is expected that homo-SCNT-hESCs will possess a wider range of applications when transplanted with neural precursor cells in the context of clinical trials.

Estimation of Genetic Parameters for Somatic Cell Scores of Holsteins Using Multi-trait Lactation Models in Korea

  • Alam, M.;Cho, C.I.;Choi, T.J.;Park, B.;Choi, J.G.;Choy, Y.H.;Lee, S.S.;Cho, K.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.3
    • /
    • pp.303-310
    • /
    • 2015
  • The study was conducted to analyze the genetic parameters of somatic cell score (SCS) of Holstein cows, which is an important indicator to udder health. Test-day records of somatic cell counts (SCC) of 305-day lactation design from first to fifth lactations were collected on Holsteins in Korea during 2000 to 2012. Records of animals within 18 to 42 months, 30 to 54 months, 42 to 66 months, 54 to 78 months, and 66 to 90 months of age at the first, second, third, fourth and fifth parities were analyzed, respectively. Somatic cell scores were calculated, and adjusted for lactation production stages by Wilmink's function. Lactation averages of SCS ($LSCS_1$ through $LSCS_5$) were derived by further adjustments of each test-day SCS for five age groups in particular lactations. Two datasets were prepared through restrictions on number of sires/herd and dams/herd, progenies/sire, and number of parities/cow to reduce data size and attain better relationships among animals. All LSCS traits were treated as individual trait and, analyzed through multiple-trait sire models and single trait animal models via VCE 6.0 software package. Herd-year was fitted as a random effect. Age at calving was regressed as a fixed covariate. The mean LSCS of five lactations were between 3.507 and 4.322 that corresponded to a SCC range between 71,000 and 125,000 cells/mL; with coefficient of variation from 28.2% to 29.9%. Heritability estimates from sire models were within the range of 0.10 to 0.16 for all LSCS. Heritability was the highest at lactation 2 from both datasets (0.14/0.16) and lowest at lactation 5 (0.11/0.10) using sire model. Heritabilities from single trait animal model analyses were slightly higher than sire models. Genetic correlations between LSCS traits were strong (0.62 to 0.99). Very strong associations (0.96 to 0.99) were present between successive records of later lactations. Phenotypic correlations were relatively weaker (<0.55). All correlations became weaker at distant lactations. The estimated breeding values (EBVs) of LSCS traits were somewhat similar over the years for a particular lactation, but increased with lactation number increment. The lowest EBV in first lactation indicated that selection for SCS (mastitis resistance) might be better with later lactation records. It is expected that results obtained from these multi-trait lactation model analyses, being the first large scale SCS data analysis in Korea, would create a good starting step for application of advanced statistical tools for future genomic studies focusing on selection for mastitis resistance in Holsteins of Korea.

Post Milking Teat Dip Effect on Somatic Cell Count, Milk Production and Composition in Cows and Buffaloes

  • Shailja, Shailja;Singh, Mahendra
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.10
    • /
    • pp.1517-1522
    • /
    • 2002
  • The effect of post milking teat dipping on somatic cell count (SCC) of milk was determined in 20 Crossbred cows and 20 Murrah buffaloes selected from institute's herd. The animals were divided into two groups of 10 each. Animals of Group I (control) were teat washed with water before the milking while Group II animals were applied teat dipping solution after the completion of milking. The cows were milked 3 times a day while buffaloes were milked twice a day. The milk samples were collected from control and treated animals on day 0, 5, 10, 15, respectively. The milk samples were analyzed for milk constituents like fat, protein, lactose, chloride, IgG, NEFA, pH and EC and total and differential somatic cell counts. The changes in milk composition and somatic cell counts were significantly different (p<0.01) between the animals and between the breeds. However SCC, chloride content (p<0.05) and epithelial cells (p<0.01) varied during different days of study. The alterations in SCC, epithelial cells, TLC, lymphocyte, neutrophil, IgG, and protein content were significantly different (p<0.01) between control and treated groups. The pH, EC, protein, SCC, epithelial cells, lymphocyte and neutrophil cells of milk declined significantly (p<0.05) after the application of teat dipping, the respective values were 6.5 vs 6.40, 2.28 vs 2.37 mhos, 3.33 vs 4.04%, 1.00 vs $0.87{\times}10^5cells/ml$, 0.39 vs 0$0.34{\times}10^5cells/ml$, 0.36 vs $0.31{\times}1,000cells/ml$ and 0.17 vs $0.14{\times}1,000cells/ml$ in cows. However in buffaloes, epithelial cells, lymphocytes, neutrophils, EC and SCC declined (p<0.05) after application of teat dipping, the values being 0.37 vs $0.29{\times}10^5cells/ml$, 0.37 vs $0.25{\times}1,000cells/ml$, 0.14 vs $0.11{\times}1,000cells/ml$, 2.56 vs 2.37 mhos and 0.94 vs $0.73{\times}10^5cells/ml$, respectively. The study indicated that post milking teat dipping could be used as an effective method for the lowering of SCC in milk of crossbred cows and buffaloes.

Development of Reversing the Usual Order of Somatic Cell Nuclear Transfer in Mice

  • Kang, Ho-In;Sung, Ji-Hye;Roh, Sang-Ho
    • Journal of Embryo Transfer
    • /
    • v.26 no.1
    • /
    • pp.85-89
    • /
    • 2011
  • Somatic cell nuclear transfer (SCNT) is a useful tool for reproducing genetically identical animals or producing transgenic animals. Many reports have demonstrated that the efficiency of animal cloning by SCNT requires reprogramming of the somatic nucleus to a totipotent like-state. The SCNT-related reprogramming might mimic the natural reprogramming process that occurs during normal mammalian development. However, recent evidence indicates that the reprogramming event by SCNT is incomplete. In this study, the traditional SCNT procedure (TNT) was modified by injecting donor nuclei into recipient cytoplasm prior to the enucleation process to expose the donor nucleus before removing the karyoplast containing the chromosomes of the oocytes which might possess additional reprogramming factors, and this modified technique was named as reversing the usual order of SCNT (RONT). Other procedures including activation and in vitro culture were the same as TNT. Contrary to expectations, the rate of blastocyst development was not different significantly between RONT and TNT (8.6% and 7.9%, respectively). However, duration of micromanipulation performed by the same technician and equipments was remarkably reduced because the ruptured oocytes after nuclear injection were excluded from the enucleation process. This study suggests that RONT, a simplified SCNT protocol, shortens the duration of SCNT procedure and this less time-costing protocol may enable the researchers to perform murine SCNT easier.

Production of Cloned Calves by the Transfer of Somatic Cells Derived from Frozen Tissues Using Simple Portable $CO_2$ Incubator

  • Dong, Y.J.;Bai, X.J.;Varisanga, M.D.;Mtango, N.R.;Otoi, T.;Rajamahendran, R.;Suzuki, T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.2
    • /
    • pp.168-173
    • /
    • 2004
  • The ability of frozen-thawed fetal skin was examined to generate viable cell lines for nuclear transfer. Fetal skin frozen at -20$-20^{\circ}C$, $-30^{\circ}C$ or $-80^{\circ}C$ in the presence of 5% DMSO used as tissue explants to generate somatic cells. The resultant confluent cells were then used as donors for nuclear transfer (NT). Of the bovine NT embryos reconstracted from the somatic cells, 62.3%, 76.6% to 65% showed cleavage 70.5%, 81.9% to 78.5% reached the stage of morula formation and 39.7%, 43.2% or 47.6% reached the blastocyst stage. There was no significant difference in development when the NT embryos were compared with those reconstracted from fresh somatic cell derieved skin tissues (72%, 75.3%, and 45.2%, for cleavage, and development to morula and blastocyst stage, respectively). NT embryos were then placed in a portable $CO_2$ incubator and carried to China from Japan by air. After reaching to farm, two NT embryos were transferred to each of 5 recipients. We obtained 2 NT calves which birth weights is 30kg and 36kg female, and gestation periods is 281 and 284 days, respectively. There were no observation any abnormality from those calves. The results indicated that cell lines derieved from bovine fetal skin cryopreserved by a simple method could be used as donors in nuclear transfer using the portable $CO_2$ incubator.

Generation of Reactive Oxygen Species and Subsequent DNA Fragmentation in Bovine Cultured Somatic Cells

  • Hwang, In-Sun;Kim, Ho-Jeong;Park, Chun-Keun;Yang, Boo-Keun;Cheong, Hee-Tae
    • Reproductive and Developmental Biology
    • /
    • v.35 no.4
    • /
    • pp.485-489
    • /
    • 2011
  • The present study was conducted to examine the reactive oxygen species (ROS) generation levels and subsequent DNA damage in the bovine cultured somatic cells. Bovine ear skin cells were classified by serum starvation, confluence and cycling cells. Cells were stained in 10 ${\mu}M$ dichlorohydrofluorescein diacetate ($H_2DCFDA$) or 10 ${\mu}M$ hydroxyphenyl fluorescein (HPF) dye to measure the $H_2O_2$ or $^{\cdot}OH$ radical levels. The samples were examined with a fluorescent microscope, and fluorescence intensity was analyzed in each cell. $H_2O_2$ and $^{\cdot}OH$ radical levels of cultured somatic cells were high in confluence group ($7.1{\pm}0.7$ and $8.4{\pm}0.4$ pixels/cell, respectively) and significantly low in serum starvation group ($4.9{\pm}0.4$ and $7.0{\pm}0.4$ pixels/cell, respectively, p<0.05). Comet tail lengths of serum starvation ($148.3{\pm}5.7$ ${\mu}M$) and confluence ($151.1{\pm}5.0$ ${\mu}M$) groups were found to be significantly (p<0.05) increased in comparison to that of cycling group ($137.1{\pm}7.5$ ${\mu}M$). These results suggest that the culture type of donor cells can affect the ROS generation, which leads the DNA fragmentation of the cells.

A Study on the Somatic Cells in Quarter Milk Samples of Holstein Cows with Suspected Mastitis (유방염으로 의심된 유우 분방유즙의 체세포 연구)

  • Jeong Ji-young;Lee Jeong-chi;Lee Chung-gil;Kim Hye-ra;Choi Jong-sung;Lee Chai-yong
    • Journal of Veterinary Clinics
    • /
    • v.22 no.3
    • /
    • pp.244-248
    • /
    • 2005
  • This study was conducted to survey the relationship between the somatic cell count (SCC), and California mastitis test (CMT) & mastitis. A total of 328 quarter milk samples were collected from 211 cows suspected to have mastitis; Both SCC and CMT were performed on the samples. Milk smear was stained with Broadhurst and Paley stain and the cells were classified into either epithelial or blood cells. Bacterial isolation was made and antimicrobial susceptibility was tested. Of the 328 quarters, 78 ($23.8{\%}$) were CMT negative with SCC <750,000/ml. As expected, CMT score increased with the increase of SCC. The number of epithelial cells decreased with the increasing number of somatic cells, while the opposite was the case with the number of blood cells. The critical point was when the SCC reached 1,000,000/ml. Up to 1,000,000 cells/ml, the number of epithelial cells was greater than that of blood cells. The results indicate that when epithelia:blood cell ratio is 58.1:41.9, the milking line should be checked and bacterial isolation be performed on the samples in order to identity mastitis.

Somatic Embryogenesis and Plant Regeneration in Mature Seed Cultures and Seed-Derived Embryogenic Suspension Cultures of Yuzu (유자의 성숙종자 배양 및 종자유래 배발생 현탁배양으로부터 체세포배발생을 통한 유자의 식물체 재생)

  • Min, Sung-Ran;Choi, Myung-Suk;Jeong, Won-Joong;Liu, Jang-Ryol
    • Journal of Plant Biotechnology
    • /
    • v.29 no.3
    • /
    • pp.185-188
    • /
    • 2002
  • Off-white, friable embryogenic calluses were formed on the internal integument of mature seeds of yuzu (Citrus junos) cultured on Murashige and Skoog's basal medium at a frequency of 1.2%. Embryogenic calluses were proliferated when cultured on medium with 1 mg/L 2,4-D. Upon transfer to medium with 0.1 mg/L kinetin, embryogenic calluses produced numerous somatic embryos. Embryogenic suspension cultures were established by placing embryogenic calluses into liquid medium with 1 mg/L 2,4-D. When plated onto medium with 0.5 mg/L ABA, embryogenic cells developed into somatic embryos at a high frequency, and then regenerated into plantlets. Plantlets were successfully transplanted to potting soil and grown in a greenhouse.

Optimization of Electrofusion Condition for the Production of Korean Cattle Somatic Cell Nuclear Transfer Embryos

  • Kim, Se-Woong;Kim, Dae-Hwan;Jung, Yeon-Gil;Roh, Sang-Ho
    • Reproductive and Developmental Biology
    • /
    • v.35 no.1
    • /
    • pp.17-22
    • /
    • 2011
  • This study was designed to determine the effect of electric field strength, duration and fusion buffer in fusion parameters on the rate of membrane fusion between the somatic cell and cytoplast for Korean cattle (HanWoo) somatic cell nuclear transfer (SCNT) procedure. Following electrofusion, effect of 5 or $10\;{\mu}M$ $Ca^{2+}$-ionophore of activation treatment on subsequent development was also evaluated. Cell fusion rates were significantly increased from 23.1% at 20 V/mm to 59.7% at 26 V/mm and 52.9% at 27 V/mm (p<0.05). Due to higher cytoplasmic membrane rupture or cellular lysis, overall efficiency was decreased when the strength was increased to 30 V/mm (18.5%) and 40 V/mm (6.3%) and the fusion rate was also decreased when the strength was at 25 V/mm or below. The optimal duration of electric stimulation was significantly higher in $25\;{\mu}s$ than 20 and $30\;{\mu}s$ (18.5% versus 9.3% and 6.3%, respectively, p<0.05). Two nonelectrolyte fusion buffers, Zimmermann's (0.28 M sucrose) and 0.28 M mannitol solution for cell fusion, were used for donor cell and ooplast fusion and the fusion rate was significantly higher in Zimmermann's cell fusion buffer than in 0.28 M mannitol (91.1% versus 48.4%, respectively, p<0.05). The cleavage and blastocyst formation rates of SCNT bovine embryos activated by $5\;{\mu}M$ $Ca^{2+}$-ionophore was significantly higher than the rates of the embryos activated with $10\;{\mu}M$ of $Ca^{2+}$-ionophore (70.0% versus 42.9% and 22.5% versus 14.3%, respectively; p<0.05). This result is the reverse to that of parthenotes which shows significantly higher cleavage and blastocyst rates in $10\;{\mu}M$ $Ca^{2+}$-ionophore than $5\;{\mu}M$ counterpart (65.6% versus 40.3% and 19.5% versus 9.7%, respectively; p<0.05). In conclusion, SCNT couplet fusion by single pulse of 26 V/mm for $25\;{\mu}s$ in Zimmermann's fusion buffer followed by artificial activation with $5\;{\mu}M$ $Ca^{2+}$-ionophore are suggested as optimal fusion and activation methods in Korean cattle SCNT protocol.