• Title/Summary/Keyword: Somatic Cell Count (SCC)

Search Result 64, Processing Time 0.021 seconds

Evaluation of Ascorbic Acid Treatment in Clinical and Subclinical Mastitis of Indian Dairy Cows

  • Naresh, Ram;Dwivedi, S.K.;Swarup, D.;Patra, R.C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.6
    • /
    • pp.905-911
    • /
    • 2002
  • A study was carried out to assess the therapeutic effect of ascorbic acid in mastitis of dairy cows. The herd with a population of 250-275 lactating cows was screened for clinical and subclinical mastitis for a period of 5 months. Based on inclusion and exclusion criteria, eighteen animals each with clinical and subclinical mastitis in one quarter only were selected as study population. Twelve cows (group A) with normal udder and health were also selected as a healthy control. Clinical mastitis cows were grouped as B (n=12) and C (n=6). Cows of group B were treated with ascorbic acid at 25 mg/kg, subcutaneously for 5 consecutive days and intramammary infusion (Ampicillin sodium 75 mg and Cloxacillin sodium 200 mg/infusion) based on antibiotic sensitivity test, till complete recovery. Group C cows received only intramammary infusion till the complete recovery. Eighteen subclinical mastitis cows were divided in group D (n=12) and E (n=6). Cows of group D were treated with ascorbic acid at 25 mg/kg subcutaneously for 5 consecutive days while group E did not receive any treatment. California mastitis test (CMT), somatic cell count (SCC), physical changes of udder and milk were used to diagnose and classify the mastitis. Evaluation of the therapy was based on CMT score and physical changes of udder and milk. Sample size calculation was also performed but was not followed for control groups due to scarcity of cases. Adequate blinding was done when and where required to avoid the biases. Confounding variables like herd, age of the cow, stage of the lactation, season and geographical region were duly considered and adequate blocking was followed. Ascorbic acid was administered in clinical and subclinical cases even after cure considering its immunostimulatory and healing inducing effects. The recovery rate was faster in cases of clinical mastitis treated with ascorbic acid along with an intramammary infusion (group B) than the quarters of group C cows. Quarter wise the average duration/number (3.16${\pm}$0.11 days) of antimicrobial intramammary infusion was significantly (p<0.01) less in group B than that of average duration/number (5.33${\pm}$0.20 days) of group C. Subclinical mastitis cows treated with ascorbic acid showed 83.33% recovery while 16.77% did not respond to treatment till last day of study. Cows of group E (untreated) did not recovered from the mastitis. Subjective parameters viz. swelling, pain reflex of udder and physical changes in milk from quarter of ascorbic acid treated cows (group B) disappeared earlier than that of group C cows. It is concluded from this study that the ascorbic acid might be useful as an adjunct in case of clinical mastitis to get quick recovery with less number of intramammary infusions. High recovery rate in subclinical mastitis quarters of group D cows is appreciable and opens a new avenue to conduct further trials in a larger population in various field conditions. However, the pharmacology of ascorbic acid with particular reference to health of mammary gland needs to be investigated.

Effect of Brown Seaweed Waste Supplementation on Lactational Performance and Endocrine Physiology in Holstein Lactating Cows (미역부산물의 첨가가 홀스타인 비유우의 비유성적과 내분비생리에 미치는 영향)

  • Lee, H.G.;Hong, Z.S.;Li, Z.H.;Xu, C.X.;Jin, X.;Jin, M.G.;Lee, H.J.;Choi, N.J.;Koh, T.S.;Choi, Yun-Jaie
    • Journal of Animal Science and Technology
    • /
    • v.47 no.4
    • /
    • pp.573-582
    • /
    • 2005
  • This study was conducted to investigate effects of the brown seaweed waste(BSW) supplementation on milk production and related endocrine response in serum in Holstein dairy cows. A total of 14 Holstein dairy cows(initial mean live weight 625kg, average lactation days 225, Reproduction 2.4) were randomly allocated into control(basal diet) and treatment groups (4% BSW/basal diet) with 7 replications for 90 days. Dry matter intake was not affected by brown seaweed waste supplementation, but daily milk yield(kg) at the last experiment significantly increased (6.25kg) in treatment group compared with control group(p<0.05) at the last experiment. The plasma insulin-like growth factor(IGF)-1, triiodothyronine($T_3$) and thyroxine($T_4$) levels were significantly increased in treatment group compared with control group(p<0.05), although the concentration of plasma growth hormone(GH) was not significantly different. Milk composition was not significantly different between groups. The somatic cell count(SCC) in milk were significantly reduced in treatment group compared with control group(p<0.05), but antibodies(total IgG, G1, G2) were not significantly different between groups. Therefore we strongly believe that the increased milk yield is related to metabolic hormones as IGF-1, $T_3$ and $T_4$ and the mechanism of reducing SCC in milk must do more study related nonspecific immunsystem in the future.

Effect of Fermented Brown Seaweed Waste (FBSW) on Milk Production, Composition and Physiological Responses in Holstein Dairy Cows (발효미역부산물의 첨가가 Holstein 비유우의 비유성적 및 생리반응에 미치는 영향)

  • Hong, Zhong-Shan;Lee, Zhe-Hu;Xu, Cheng-Xiong;Yin, Jin-Long;Jin, Young-Cheng;Lee, Hyun-Jun;Lee, Sang-Bum;Choi, Yun-Jaie;Lee, Hong-Gu
    • Journal of Animal Science and Technology
    • /
    • v.52 no.4
    • /
    • pp.287-296
    • /
    • 2010
  • This study was conducted to determine effects of fermented brown seaweed waste (FBSW) on milk production, composition and physiological responses as functional feed for 60 days in Holstein dairy cows. A total of 24 Holstein dairy cows (average age 49.33 months, average lactation days 175, Reproduction 2.0) were randomly allocated into control(basal diet), 1% FBSW (180g in basal diet) and 2% FBSW (360g in basal diet) groups with 8 replications for 60 days. Daily milk yield and composition (fat, protein, SNF, MUN) were not affected by FBSW supplementation, but Ca level in milk was significantly increased 4.29 mg/dl and 2.91 mg/dl in 1% and 2% groups compared to control group (p<0.05) at the end of the experiment, respectively. The somatic cell count (SCC) in milk was not significant. The plasma $T_4$ level (concentration) were increased in 1% and 2% FBSW compared to control group at the end of the experiment (p<0.05), but between triiodothyronine ($T_3$) and thyroxin ($T_4$) levels were not significant. Concentrations of plasma glucose in control, 1% FBSW and 2% FBSW groups were 64. 37mg/dl, 66.15mg/dl and 73.02 mg/dl and plasma NEFA level was 0.30~0.32 mEq/dl. Concentrations of BUN tended to be higher for FBSW group than control group. Although WBC, RBC, Hb, Hct, T-B, ALP, and GPT levels were not affected by FBSW supplementation, GOT level was significantly decreased in cows fed 1% FBSE diet compared to control group (P<0.05). Therefore we strongly suggest that the 1% FBSW supplementation in basal diet increases the milk yield and Ca level in Holstein dairy cows.

Effects of Feeding Heat Treated Protein and Mineral Complex on In Vitro Fermentation Characteristics, Milk Production and Composition of Holstein Dairy Cows (열처리 단백질-광물질 복합제제 첨가가 In Vitro 발효성상과 착유우의 유량 및 유성분에 미치는 영향)

  • Choi, N.J.;Bae, G.S.;Nam, K.P.;Chang, M.B.;Um, J.S.;Ko, J.Y.;Ha, J.K.
    • Journal of Animal Science and Technology
    • /
    • v.44 no.5
    • /
    • pp.541-548
    • /
    • 2002
  • This study, consisting of two experiments, was conducted to determine the effects of feeding heat treated protein and mineral complex (HPM) on milk production and composition, and ruminal fermentation of Holstein dairy cows. In in vitro experiment, HPM levels were 0, 0.2, 1 and 2%, and Timothy hay, which was substrate, was milled as 1 mm size, and the effects of HPM on pH, ammonia and VFA were analyzed after incubation times of 0, 6, 12, 24 and 48 h, respectively. The pH and ammonia production were not significantly different between treatments during the incubation. In addition, generally, total VFA and individual VFA were not affected by HPM on 0, 6 and 24 h. While, total VFA and individual VFA were increased in 0.2% and 1% of HPM supplemented treatments, but decreased in 2% of HPM treatment compared with control on 12 h. On 48 h, total VFA and individual VFA were increased in HPM treatments compared to control (P<0.05). However, A/P ratio was not affected by HPM supplementation. Gas production was higher in HPM treatment compared to control on 24 h (P<0.05) and 48 h (P<0.05). In lactating experiment, fourteen lactating Holstein cows were used for 4 months in a cross over experimental design. There were two treatments; no added HPM as a control and 0.2% of HPM added as a test treatment. Daily milk yield (P<0.001), 4% FCM (P<0.001), milk protein (P<0.05) and SNF (solid not fat; P<0.05) were increased in HPM treatment compared to control. While, milk fat, MUN (milk urea nitrogen) and SCC (somatic cell count) were not significantly different between treatments.