• Title/Summary/Keyword: Solvent evaporation

Search Result 271, Processing Time 0.031 seconds

Study on Kinetics and Thermodynamics of Rotary Evaporation of Paclitaxel for Removal of Residual Pentane (파클리탁셀의 잔류 펜탄 제거를 위한 회전증발의 동역학 및 열역학에 관한 연구)

  • Han, Jang Hoon;Ji, Seong-Bin;Kim, Ye-Sol;Lee, Seung-Hyun;Park, Seo-Hui;Kim, Jin-Hyun
    • Korean Chemical Engineering Research
    • /
    • v.55 no.6
    • /
    • pp.807-815
    • /
    • 2017
  • This study investigated the removal efficiency of residual pentane from paclitaxel according to the drying temperature in the case of rotary evaporation, and performed a kinetic and thermodynamic analysis of the drying process. At all the temperatures (25, 30, 35, 40, and $45^{\circ}C$), a large amount of the residual solvent was initially removed during the drying, and the drying efficiency increased when increasing the drying temperature. Five drying models (Newton, Page, modified Page, Henderson and Pabis, Geometric) were then used for the kinetic analysis, where the Henderson and Pabis model showed the highest coefficient of determination ($r^2$) and lowest root mean square deviation (RMSD), indicating that these models were the most suitable. Furthermore, in the thermodynamic analysis of the rotary evaporation, the activation energy ($E_a$) was 4.9815 kJ/mol and the standard Gibbs free energy change (${\Delta}G^0$) was negative, whereas the standard enthalpy change (${\Delta}H^0$) and standard entropy change (${\Delta}S^0$) were both positive, indicating that the drying process was spontaneous, endothermic, and irreversible.

Fabrication of PLGA/Dextran Double-Layered Microspheres by Oil-in-Water Solvent Evaporation Method (O/W 용매 증발법을 이용한 PLGA와 덱스트란의 이중층 미립구 제조)

  • Ko Jong Tae;Lee Jae-Ho;Lee Chang-Rae;Shin Hyung Sik;Yuk Soon Hong;Kim Moon Suk;Khang Gilson;Rhee John M.;Lee Hai Bang
    • Polymer(Korea)
    • /
    • v.29 no.6
    • /
    • pp.543-548
    • /
    • 2005
  • Double-layered spheres play an important role in controlling drug delivery for pharmaceutical application, because of the low initial burst compared with single-layered spheres and targetable delivery to specific organ. But it has drawback in loading drug and controlling size. In this study, we developed double-layered spheres using relatively simple oil-in-water (O/W) solvent evaporation method witw/without ultrasonication and investigated the size variation of the double-layered microspheres on the contents of poly(lactide- co-glycolide) (PLGA). Double - layered spheres were char-acterized by scanning elecron microscope (SEM), camscope, and confocal fluorescence laser microscope (CFLM). Double-layered spheres showed smooth surfaces and obvious difference between core and corona by SEM observation and camscope. We observed the fluorescent core in the double-walled spheres composed of FlTC-dextran and PLGA using CFLM. It was found that the core of the microsphere was dextran and the corona of the fabricate microsphere was PLGA. Also, the more PLGA concentration, the more the size of the fabricating double-layered sphere observed.

Release Behavior and Characterization of PCL Microcapsules Containing Lemongrass Oil (레몬그라스 오일을 함유하는 PCL마이크로캡슐의 특성과 방출거동)

  • Park, Jong-Kwon;Kim, Ji-Eun;Jeong, Noh-Hee
    • Applied Chemistry for Engineering
    • /
    • v.26 no.3
    • /
    • pp.341-346
    • /
    • 2015
  • In this study, poly ${\varepsilon}$-caprolactone(PCL) microcapsules containing lemongrass oil was prepared by the solvent evaporation method. Effects of concentrations of PCL and poly vinyl alcohol (PVA) as well as stirring speeds when preparing microcapsules were investigated. Specific peaks of lemongrass oil in PCL microcapsules at 1600 and $2900cm^{-1}$ were observed by FT-IR. The particle size and shape of microcapsules were also measured by polarizing microscope and optical microscopy. The average particle size of microcapsules decreased with increasing the stirring rate. At the stirring speed of 1500 rpm, and 1 wt% of each PCL and PVA concentrations, the smallest particles were formed. Collection efficiencies of lemongrass oil of 77.5% and 69.5% were obtained when 1.5 wt% of PCL and 2 wt% of PVA were used, respectively. In addition, the release behavior and antioxidant activity of lemongrass oil from PCL microcapsules were examined using UV-Vis spectrophotometry. When 0.5 wt% PCL and 2.0 wt% PVA were used with the slow stirring rate, microcapsules showed a fast release rate. The characteristics of antioxidant activity exhibited similar to that of the release behavior.

Effect of Ratio of Polyoxalate/PLGA Microspheres on the Release Behavior of Zaltoprofen (Polyoxalate 및 PLGA 미립구의 혼합 비율별에 따른 Zaltoprofen의 방출거동)

  • Lee, Jung Keun;Kim, Kyoung Hee;Kim, Young Lae;Park, Guk Bin;Kim, Min Jeong;Kang, Su Ji;Lee, Dongwon;Khang, Gilson
    • Polymer(Korea)
    • /
    • v.37 no.1
    • /
    • pp.28-33
    • /
    • 2013
  • Zaltoprofen, a propionic acid derivative non-steroidal anti-inflammatory drug, was known to have powerful inhibitory effects on acute, subacute and chronic inflammation. For initial release and sustained release, the microspheres were prepared using an emulsion-solvent evaporation method like an O/W emulsion method with varying the ratio of zaltoprofen-loaded polyoxalate (POX)/PLGA micropheres. The morphology of the microspheres was confirmed by scanning electron microscopy. The crystallinity of microspheres was analyzed by X-ray diffraction and differential scanning calorimeter. Fourier transform infrared spectroscopy was used to analyze the chemical structure of microspheres. The increased ratio of POX microspheres affected the initial drug release, and the sustained release of drug was influenced by ratio of PLGA microspheres. In this study, the initial release behavior of zaltoprofen can be controlled by the ratio of POX/PLGA microspheres.

Effect of Cosurfactants on the Release Behavior of Zaltoprofen-loaded PLGA Microspheres in In Vitro : Preparation and Characterization (보조계면활성제 첨가에 따른 잘토프로펜을 함유한 PLGA 미립구의 생체외 방출 거동: 제조 및 특성)

  • Eom, Shin;Yoo, Seok-Cheol;Kim, Yong-Ki;Lee, Young-Hyun;Lee, Eun-Yong;Yu, Hyeon;Lee, Dong-Won;Khang, Gil-Son
    • Polymer(Korea)
    • /
    • v.34 no.4
    • /
    • pp.333-340
    • /
    • 2010
  • Zaltoprofen, a propionic acid derivative non-steroidal anti-inflammatory drug (NSAID), is known to have powerful inhibitory effects on acute, subacute and chronic inflammation. We developed poly(lactide-co-glycolide)(PLGA) microspheres loaded with zaltoprofen for sustained controlled delivery using an oil-water solvent evaporation methods by varying PLGA molecular weight and cosurfactant contents. Physicochemical properties and morphology of zaltoprofen-loaded PLGA microspheres were investigated by scanning electron microscope, X-ray diffraction and differential scanning calorimeter. The size of microspheres increased with the molecular weight of PLGA and the content of cosurfactants. The increase of PLGA molecular weight and cosurfactant content decreased the porosity of microspheres, subsequently resulting in the slow drug release. The results demonstrated that the adjustment of PLGA molecular weight and the cosurfactant content allowed us to control the drug release profiles of drug-loaded microspheres.

Low-temperature solution-processed aluminum oxide layers for resistance random access memory on a flexible substrate

  • Sin, Jung-Won;Jo, Won-Ju
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.257-257
    • /
    • 2016
  • 최근에 메모리의 초고속화, 고집적화 및 초절전화가 요구되면서 resistive random access memory (ReRAM), ferroelectric RAM (FeRAM), phase change RAM (PRAM)등과 같은 차세대 메모리 기술이 활발히 연구되고 있다. 다양한 메모리 중에서 특히 resistive random access memory (ReRAM)는 빠른 동작 속도, 낮은 동작 전압, 대용량화와 비휘발성 등의 장점을 가진다. ReRAM 소자는 절연막의 저항 스위칭(resistance switching) 현상을 이용하여 동작하기 때문에 SiOx, AlOx, TaOx, ZrOx, NiOx, TiOx, 그리고 HfOx 등과 같은 금속 산화물에 대한 연구들이 활발하게 이루어지고 있다. 이와 같이 다양한 산화물 중에서 AlOx는 ReRAM의 절연막으로 적용되었을 때, 우수한 저항변화특성과 안정성을 가진다. 하지만, AlOx 박막을 형성하기 위하여 기존에 많이 사용되어지던 PVD (physical vapour deposition) 또는 CVD (chemical vapour deposition) 방법에서는 두께가 균일하고 막질이 우수한 박막을 얻을 수 있지만 고가의 진공장비 사용 및 대면적 공정이 곤란하다는 문제점이 있다. 한편, 용액 공정 방법은 공정과정이 간단하여 경제적이고 대면적화가 가능하며 저온에서 공정이 이루어지는 장점으로 많은 관심을 받고 있다. 본 연구에서는 sputtering 방법과 용액 공정 방법으로 형성한 AlOx 기반의 ReRAM에서 메모리 특성을 비교 및 평가하였다. 먼저, p-type Si 기판 위에 습식산화를 통하여 SiO2 300 nm를 성장시킨 후, electron beam evaporation으로 하부 전극을 형성하기 위하여 Ti와 Pt를 각각 10 nm와 100 nm의 두께로 증착하였다. 이후, 제작된 AlOx 용액을 spin coating 방법으로 1000 rpm 10 초, 6000 rpm 30 초의 조건으로 증착하였다. Solvent 및 불순물 제거를 위하여 $180^{\circ}C$의 온도에서 10 분 동안 열처리를 진행하였고, 상부 전극을 형성하기 위해 shadow mask를 이용하여 각각 50 nm, 100 nm 두께의 Ti와 Al을 electron beam evaporation 방법으로 증착하였다. 측정 결과, 용액 공정 방법으로 형성한 AlOx 기반의 ReRAM에서는 기존의 sputtering 방법으로 제작된 ReRAM에 비해서 저항 분포가 균일하지는 않았지만, 103 cycle 이상의 우수한 endurance 특성을 나타냈다. 또한, 1 V 내외로 동작 전압이 낮았으며 104 초 동안의 retention 측정에서도 메모리 특성이 일정하게 유지되었다. 결론적으로, 간단한 용액 공정 방법은 ReRAM 소자 제작에 많이 이용될 것으로 기대된다.

  • PDF

Structure Development of Solvent Casting Triacetyl Cellulose Film (트리아세틸 셀룰로오스 필름의 용액가공에 의한 구조변화)

  • Kim, Hyo-Gap;Kim, Hong-Suk;Kim, Han-Sung;Cho, Jin-Sik;Kim, Yong-Won;Kang, Ho-Jong
    • Polymer(Korea)
    • /
    • v.34 no.3
    • /
    • pp.210-214
    • /
    • 2010
  • The structural development of triacetyl cellulose (TAC) was studied as a function of solution casting processing parameters such as dope concentration, evaporation temperature, annealing temperature and the addition of plasticizer. The crystalline structure was developed by the solution casting and the level of crystallinity was increased with increasing dope concentration and evaporation temperature. The crystalline structure could be enhanced by the annealing process after formation of TAC film. Introducing plasticizer resulted in decreasing melting temperature and crytallinity of TAC film due to the increase of chain mobility. It was also found that thermal stability of TAC was improved due to the rigid structure of applied plasticizer.

Preparation of Asymmetric Polyethersulfone Membrane and its Gas Separation Performance (폴리이서설폰 비대칭 기체분리막의 제조와 분리성능)

  • 함문기;손우익;이용택;김정훈;이수복
    • Membrane Journal
    • /
    • v.10 no.3
    • /
    • pp.130-138
    • /
    • 2000
  • Polyethersulfone (PES) asymmetric membranes for gas separation were prepared by dry/wet phase inversion method and their separation properties for CO$_2$ and N$_2$ gases were investigated. The effects of important variables such as composition of casting solution and evaporation time in preparation of asymmetric gas membrane on membrane morphology and the separation properties were analyzed and the optimum condition of membrane preparation was established. To compensate the defects like pinholes existed on skin layer of the membrane prepared, the membranes were coated with silicone resin. By comparing separation properties after coating with those before coating, we found that the coating of silicone resin was effective to enhance the separation properties. The casting solution mainly used in this study consisted of PES, N-methyl-2-pyrrolidone, acetone, ethanol and distilled water was used as coagulation agent. It was shown that the selectivity for CO$_2$/N$_2$ was getting higher but the permeability decreases, as the contents of PES and volatile organic solvent and evaporation time increased. The selectivity for CO$_2$/N$_2$ and permeability of CO$_2$ of the membrane prepared under the optimum condition were found to be 61 and 21 GPU, respectively.

  • PDF

Study on purification and extraction of nitrate salts from waste scrubbing liquid of de-SOx/de-NOx (탈질/탈황 폐 세정액으로부터 질산염 추출 및 정제 연구)

  • Kim, Woo-Ram;Jo, Young-Min;Lee, Heon-Seok;Oh, Soo-Kwan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.32 no.1
    • /
    • pp.48-55
    • /
    • 2015
  • IMO to issue some restricted maritime legislation for reducing the adverse environmental impacts arising from such ship exhaust emissions. According to the IMO policy, every ship entering the Baltic SECAs has to equip the gas cleaning scrubber. The discharged waste solution by gas cleaning scrubber contains many types of salts, which to recover some valuable materials before disposal. This study try to achieve valuable salts including AN and AS throughout a few process such as selective organic solvents salting out, low temperature extraction and thermal evaporation. Amongst them, Thermal evaporation with repetition extraction using inorganic solvent was the most optimum to purify the extracted AN. This valuable salt was evaluated by Elemental analysis and Differential scanning calorimetry.

Effect of Hole-Transporting Layer and Solvent in Solution Processed Highly-Efficient Small Molecule Organic Light-Emitting Diodes

  • Jo, Min-Jun;Hwang, Won-Tae;Chae, Hee-Yeop
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.250-250
    • /
    • 2012
  • Organic light-emitting diodes (OLED) and polymer light emitting diodes (PLED) have been regarded as the candidate for the next generation light source and flat panel display. Currently, the most common OLED industrial fabrication technology used in producing real products utilizes a fine shadow mask during the thermal evaporation of small molecule materials. However, due to high potential including low cost, easy process and scalability, various researches about solution process are progressed. Since polymer has some disadvantages such as short lifetime and difficulty of purifying, small molecule OLED (SMOLED) can be a good alternative. In this work, we have demonstrated high efficient solution-processed OLED with small molecule. We use CBP (4,4'-N,N'-dicarbazolebiphenyl) as a host doped with green dye (Ir(ppy)3 (fac-tris(2-phenyl pyridine) iridium)). PBD (2-(4-biphenylyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole) and TPD (N,N'diphenyl-N,N'-Bis (3-methylphenyl)-[1,1-biphenyl]-4,4'-diamine) are employed as an electron transport material and a hole transport material. And TPBi (2,2',2''-(1,3,5-phenylene) tris (1-phenyl-1H-benzimidazole)) is used as an hole blocking layer for proper hole and electron balance. With adding evaporated TPBi layer, the current efficiency was very improved. Among various parameters, we observed the property of OLED device by changing the thickness of hole transporting layer and solvent which can dissolve organic material. We could make small molecule OLED device with finding proper conditions.

  • PDF