Browse > Article

Structure Development of Solvent Casting Triacetyl Cellulose Film  

Kim, Hyo-Gap (Center for Photofunctional Energy Materials, Department of Polymer Sci. and Eng., Dankook University)
Kim, Hong-Suk (Center for Photofunctional Energy Materials, Department of Polymer Sci. and Eng., Dankook University)
Kim, Han-Sung (Hyosung Corp.)
Cho, Jin-Sik (Hyosung Corp.)
Kim, Yong-Won (Hyosung Corp.)
Kang, Ho-Jong (Center for Photofunctional Energy Materials, Department of Polymer Sci. and Eng., Dankook University)
Publication Information
Polymer(Korea) / v.34, no.3, 2010 , pp. 210-214 More about this Journal
Abstract
The structural development of triacetyl cellulose (TAC) was studied as a function of solution casting processing parameters such as dope concentration, evaporation temperature, annealing temperature and the addition of plasticizer. The crystalline structure was developed by the solution casting and the level of crystallinity was increased with increasing dope concentration and evaporation temperature. The crystalline structure could be enhanced by the annealing process after formation of TAC film. Introducing plasticizer resulted in decreasing melting temperature and crytallinity of TAC film due to the increase of chain mobility. It was also found that thermal stability of TAC was improved due to the rigid structure of applied plasticizer.
Keywords
triacetyl cellulose film; solution casting; crystalline structure; plasticizer;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 O. Biganskaa, P. Navarda, and O. Bdu, Polymer, 43, 6139 (2002).   DOI   ScienceOn
2 H. G. Kim, H. S. Kim, H. S. Kim, J. S. Cho, Y. W. Kim, and H. J. Kang, Polymer(Korea), 34, 2 (2010).   과학기술학회마을
3 A. L. Daroz, A. J. F. Carvalho, A. Gandini, and A. A. S. Curvelo, Carbohyd. Polym., 63, 417 (2006).   DOI   ScienceOn
4 H. Nakayama, N. Fukagawa, Y. Nishiura, T. Yasuda, T. Ito, and K. Mihayashi, J. Photopolym. Sci. Techn., 19, 2 (2006).
5 L. Yan, Q. Zhu, and T. Ikeda, J. Appl. Polym. Sci., 82, 2770 (2001).   DOI   ScienceOn
6 E. Roche, H. Chanzy, M. Boudeulle, and R. H. Marchessault, Macromolecules, 11, 1 (1978).   DOI   ScienceOn
7 V. Vittoria, Polymer, 32, 5 (1991).
8 Y. Lipatov, V. Chornaya, T. Todosijchuk, and G. Menzheres, J. Colloid Interface Sci., 294, 273 (2006).   DOI   ScienceOn
9 J. Wang, A. T. DiBenedetto, J. F. Johnson, S. J. Huang, and J. L. Cercena, Polymer, 37, 20 (1989).
10 S. A. Nouha, A. Mohamed, H. M. EL Hussieny, and E. M. Sakr, Mater. Chem. Phys., 110, 376 (2008).   DOI   ScienceOn
11 H. M. Shaikh, K. V. Pandare, G. Nair, and A. J. Varma, Carbohyd. Polym., 76, 23 (2009).   DOI   ScienceOn
12 M. Yamaguchi, T. Iwasaki, K. Okada, and K. Okamoto, Acta Mater., 57, 823 (2009).   DOI   ScienceOn
13 S. Shimamoto and D. G. Gray, Cellulose, 6, 15 (1999).   DOI   ScienceOn
14 G. M. Wallner, R. Hausner, H. Hegedys, H. Schobermayr, and R. W. Lang, Sol. Energy, 80, 1410 (2006).   DOI   ScienceOn