• Title/Summary/Keyword: Solvatochromic study

Search Result 8, Processing Time 0.024 seconds

Study of Retention of Mono-Substituted Phenols in Reversed-Phase Liquid Chromatography Based on the Linear Solvation Energy Relationships Using the Solvatochromic Parameters for Mobile Phases, ${\pi}_m^{\ast}, {\alpha}_m$ and ${\beta}_m$

  • Park, Jung-Hag;Jang, Myung-Duk;Kim, Sang-Tae
    • Bulletin of the Korean Chemical Society
    • /
    • v.11 no.4
    • /
    • pp.297-302
    • /
    • 1990
  • Retention of mono-substituted phenols in reversed-phase liquid chromatography has been studied based on the linear solvation energy relationships using the solvatochromic mobile phase parameters, ${\pi}_m^{\ast}, {\alpha}_m$ and ${\beta}_m$. It has been observed that retention behavior of phenols in RPLC were well represented by regression equations vs. solvatochromic mobile phase parameters even though the equations may be incomplete due to lack of an explicit cavity term. Dependence of retention of monosubstituted phenols on the mobile phase properties were varied depending on the type of the organic cosolvent in the mobile phase, e.g., ${\beta}_m$ and {\alpha}_m$ in methanol-water system, but ${\pi}_m^{\ast} and ${\beta}_m$ in THF-water system. It has been suggested that retention of phenols in methanol-water system is controlled by the solvophobicity of the mobile phase.

Study of Solvent Effects on the Ionization of tert-butyl Halide in MeOH-DMSO Mixtures (MeOH-DMSO 혼합용매중에서 tert-butyl halide의 이온화에 미치는 용매효과)

  • Yeol Sakong;Shi Choon Kim;Jin Sung Kim;Bon Su Lee
    • Journal of the Korean Chemical Society
    • /
    • v.29 no.1
    • /
    • pp.45-51
    • /
    • 1985
  • Rate constants and activation parameters for the methanolysis of t-butyl halide (t-BuCl, t-BuBr, t-BuI) in various MeOH-DMSO mixtures were measured by conductometric method. Taft's solvatochromic parameters, such as polarity-polarizability(SPP's), ${\pi}^{\ast}$, hydrogen bond donor (HBD) acidity, ${\alpha}$, and hydrogen bond acceptor (HBA) basicity, ${\beta}$ of the solvents, were determined by the so called solvatochromic method using five indicators. The variation of methanolysis rate with the solvent composition was discussed on the basis of the activation parameters and the correlation of the rates with the solvatochromic parameters. It is concluded that the polarity-polarizability, HBD acidity and HBA basicity of the mixtures had an effect on the ionization of t-butyl halide cooperatively, also that the specific interaction between the leaving groups and the solvents, such as ion-dipole and hydrogen bond acceptor-donor interaction, is the most important factor of solvent effects on the stabilization of transition states.

  • PDF

Highly Sensitive Multichannel Interdigitated Capacitor Based Bitterness Sensor

  • Khan, Md. Rajibur Rahaman;Kang, Shin-Won
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.69-75
    • /
    • 2018
  • In this study, we propose a multichannel interdigitated capacitor (IDC) sensor for detecting the bitterness of coffee. The operating principle of the device is based on the variation in capacitance of a sensing membrane in contact with a bitter solution. Four solvatochromic dyes, namely, Nile red, Reichardt's dye, auramine-O, and rhodamine-B, were mixed with polyvinylchloride (PVC) and N,N-dimethylacetamide (DMAC), to create four different types of bitter-sensitive solutions. These solutions were then individually inserted into four interdigitated electrodes (IDEs) using a spin coater, to prepare four distinct IDC sensors. The sensors are capable of detecting bitterness-inducing chemical compounds in any solution, at concentrations of approximately $1{\mu}M$ to 1 M. The sensitivity of the IDC bitterness sensor containing the Reichardt's dye sensing-membrane was approximately 1.58 nF/decade. The multichannel sensor has a response time of approximately 6 s, and an approximate recovery time of 5 s. The proposed sensor offers a stable sensing response and linear sensing performance over a wide measurement range, with a correlation coefficient ($R^2$) of approximately 0.972.

Volatile organic compounds gas sensor using side polished optical fiber (측면 연마 광섬유를 이용한 휘발성 유기 화합물 가스센서)

  • Yeom, Se-Hyuk;Heng, Yuan;Lim, Jun-Woo;Kim, Hak-Rin;Kang, Shin-Won
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.428-434
    • /
    • 2010
  • In this study, a novel gas sensor based on evanescent field coupling between single mode side polished fiber and solvatochromic dye dispersed polymer waveguide was demonstrated. We fabricated a side polished optical fiber device as a volatile organic compounds gas detector. Solvatochromic dye was coated on the top of the side polished optical fiber to take advantage of evanescent field coupling. The solvatochromism can be defined as the phenomenon whereby a compound changes color, either by a change in the absorption or emission spectra of molecule, when reacted in different VOCs. The device reacted to polarity gases like a hexane, butane, xylene etc. The resonance wavelength was shifted by the xylene concentration which range was 0.1 ppm ~ 100 ppm. Also, the response with the concentration was lineer and the detection limit was 0.1 ppb.

Spectroscopic Study on Three States of Water in the Reverse Micelle Using Methylene Blue as a Probe (Methylene Blue를 이용한 역미셀에서 물의 세 가지 상태에 대한 분광학적 연구)

  • Bum Young Park;Kab Sang Jung;Soo-Chang Yu;Ho Seob Choi
    • Journal of the Korean Chemical Society
    • /
    • v.47 no.4
    • /
    • pp.309-314
    • /
    • 2003
  • In order to find out the microscopic environmental information on the nonionic reverse micelle of Triton X-100/n-hexanol/water in cyclohexane, an absorption and fluorescence spectroscopic study has been conducted using a methylene blue(MB). The information on the microscopic states of water in the polar core of the reverse micelle has been found by investigating complex formation and solvatochromic behavior between MB and Triton X-100. As a result, it was found that there exist three states in the polar core of the reverse micelle. The measured values of $W(=[H_2O]/[Surf])$ for the three states of water are 0.71, 4.98, and 7.26, and the corresponding lifetimes of MB are $15.45 ns{\pm}0.56$, $12.27 ns{\pm}0.79$, and $8.28 ns{\pm}0.82$, respectively.

Selectivity of between K+ and Na+ Ions to 12-Crown-4: QSPR Analysis by a Monte Carlo Simulation Study

  • Kim, Hag-Sung
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.2
    • /
    • pp.431-437
    • /
    • 2008
  • The solvent effects on the relative free energies of binding of K+ and Na+ ions to 12-crown-4 and Dlog Ks (the difference of stability constant of binding) have been investigated by a Monte Carlo simulation of statistical perturbation theory (SPT) in several solvents. Comparing the relative free energies of binding of K+ and Na+ ions to 12-crown-4, in CH3OH of this study with experimental works, there is a good agreement among the studies. We have reported here the quantitative solvent-polarity relationships (QSPR) studied on the solvent effects the relative free energies of binding of K+ and Na+ ions to 12-crown-4. We noted that DN(donor number) dominates the differences in relative solvation Gibbs free energies of K+ and Na+ ions and DN dominates the negative values in differences in the stability constant (Dlog Ks) as well as the relative free energies of binding of K+ and Na+ ions to 12-crown-4 and p* (Kamlet-Tafts solvatochromic parameters) dominates the positive values in differences in the stability constant (Dlog Ks) as well as the relative free energies of binding of K+ and Na+ ions to 12-crown-4.

QSPR Analysis of Solvent Effect on Selectivity of 18-Crown-6 between $Nd^{3+}$ and $Eu^{3+}$ Ions: a Monte Carlo Simulation Study

  • Kim, Hag-Sung
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.12
    • /
    • pp.2011-2018
    • /
    • 2006
  • We have investigated the solvent effects on $\Delta log\;K_s $(the difference of stability constant of binding) and the different free energies of binding of $Nd^{3+}$ and $Eu^{3+}$ ions to 18-crown-6, i.e., the selectivity of $Nd^{3+}$ and $Eu^{3+}$ ions to 18-crown-6 using a Monte Carlo simulation of statistical perturbation theory (SPT) in diverse solvents. The stability constant ($\Delta log\;K_s $) of binding of $Nd^{3+}$ and $Eu^{3+}$ ions to 18-crown-6, in $CH_3OH$ was calculated in this study as -1.06 agrees well with the different experimental results of -0.44~-0.6, respectively. We have reported here the quantitative solvent-polarity relationships (QSPR) studied on the solvent effects the relative free energies of binding of $Nd^{3+}$ and $Eu^{3+}$ ions to 18-crown-6. From the calculated coefficients of QSPR, we have noted that solvent polarity (ET) and Kamlet -Tafts solvatochromic parameters (b ) dominate the differences in relative solvation Gibbs free energies of $Nd^{3+}$ and $Eu^{3+}$ ions but basicity (Bj) dominates the negative values in differences in the stability constant ($\Delta log\;K_s $) as well as the relative free energies of binding of $Nd^{3+}$ and $Eu^{3+}$ ions to 18-crown-6 and acidity (Aj) dominates the positive values in differences in the stability constant ($\Delta log\;K_s $) as well as the relative free energies of binding of $Nd^{3+}$ and $Eu^{3+}$ ions to 18-crown-6.