• 제목/요약/키워드: Solvatochromic study

검색결과 8건 처리시간 0.021초

Study of Retention of Mono-Substituted Phenols in Reversed-Phase Liquid Chromatography Based on the Linear Solvation Energy Relationships Using the Solvatochromic Parameters for Mobile Phases, ${\pi}_m^{\ast}, {\alpha}_m$ and ${\beta}_m$

  • Park, Jung-Hag;Jang, Myung-Duk;Kim, Sang-Tae
    • Bulletin of the Korean Chemical Society
    • /
    • 제11권4호
    • /
    • pp.297-302
    • /
    • 1990
  • Retention of mono-substituted phenols in reversed-phase liquid chromatography has been studied based on the linear solvation energy relationships using the solvatochromic mobile phase parameters, ${\pi}_m^{\ast}, {\alpha}_m$ and ${\beta}_m$. It has been observed that retention behavior of phenols in RPLC were well represented by regression equations vs. solvatochromic mobile phase parameters even though the equations may be incomplete due to lack of an explicit cavity term. Dependence of retention of monosubstituted phenols on the mobile phase properties were varied depending on the type of the organic cosolvent in the mobile phase, e.g., ${\beta}_m$ and {\alpha}_m$ in methanol-water system, but ${\pi}_m^{\ast} and ${\beta}_m$ in THF-water system. It has been suggested that retention of phenols in methanol-water system is controlled by the solvophobicity of the mobile phase.

MeOH-DMSO 혼합용매중에서 tert-butyl halide의 이온화에 미치는 용매효과 (Study of Solvent Effects on the Ionization of tert-butyl Halide in MeOH-DMSO Mixtures)

  • 사공열;김시준;김진성;이본수
    • 대한화학회지
    • /
    • 제29권1호
    • /
    • pp.45-51
    • /
    • 1985
  • MeOH-DMSO 혼합용매중에서 t-butyl halide의 가메탄올 분해반응 속도상수 및 활성화 파라미터를 전기전도도법으로 측정하였고, Taft의 분광용매화 변수인 용매의 극성-편극성(${\pi}^{\ast}$), 수소결합주기산도(${\alpha}$) 및 수소결합 받기염기도(${\beta}$)를 분광법에 의해서 5가지의 지시약을 이용하여 측정계산하였다. 분광용매화변수와 반응속도상수로부터 얻은 활성화파라미터를 써서 용매의 부피조성비에 따른 가용매분해반응의 속도상수 변화를 논의한 결과, t-butyl halide의 이온화에 용매의 ${\pi}^{\ast}$, ${\alpha}$${\beta}$가 협동적으로 기여했고, 또한 이탈기와 혼합용매사이의 이온-쌍극자 작용과 수소결합주기-받기 작용과 같은 독특한 상호작용이 전이상태의 안정화에 미치는 가장 중요한 용매효과 인자들임을 밝혔다.

  • PDF

Highly Sensitive Multichannel Interdigitated Capacitor Based Bitterness Sensor

  • Khan, Md. Rajibur Rahaman;Kang, Shin-Won
    • 센서학회지
    • /
    • 제27권2호
    • /
    • pp.69-75
    • /
    • 2018
  • In this study, we propose a multichannel interdigitated capacitor (IDC) sensor for detecting the bitterness of coffee. The operating principle of the device is based on the variation in capacitance of a sensing membrane in contact with a bitter solution. Four solvatochromic dyes, namely, Nile red, Reichardt's dye, auramine-O, and rhodamine-B, were mixed with polyvinylchloride (PVC) and N,N-dimethylacetamide (DMAC), to create four different types of bitter-sensitive solutions. These solutions were then individually inserted into four interdigitated electrodes (IDEs) using a spin coater, to prepare four distinct IDC sensors. The sensors are capable of detecting bitterness-inducing chemical compounds in any solution, at concentrations of approximately $1{\mu}M$ to 1 M. The sensitivity of the IDC bitterness sensor containing the Reichardt's dye sensing-membrane was approximately 1.58 nF/decade. The multichannel sensor has a response time of approximately 6 s, and an approximate recovery time of 5 s. The proposed sensor offers a stable sensing response and linear sensing performance over a wide measurement range, with a correlation coefficient ($R^2$) of approximately 0.972.

측면 연마 광섬유를 이용한 휘발성 유기 화합물 가스센서 (Volatile organic compounds gas sensor using side polished optical fiber)

  • 염세혁;;임준우;김학린;강신원
    • 센서학회지
    • /
    • 제19권6호
    • /
    • pp.428-434
    • /
    • 2010
  • In this study, a novel gas sensor based on evanescent field coupling between single mode side polished fiber and solvatochromic dye dispersed polymer waveguide was demonstrated. We fabricated a side polished optical fiber device as a volatile organic compounds gas detector. Solvatochromic dye was coated on the top of the side polished optical fiber to take advantage of evanescent field coupling. The solvatochromism can be defined as the phenomenon whereby a compound changes color, either by a change in the absorption or emission spectra of molecule, when reacted in different VOCs. The device reacted to polarity gases like a hexane, butane, xylene etc. The resonance wavelength was shifted by the xylene concentration which range was 0.1 ppm ~ 100 ppm. Also, the response with the concentration was lineer and the detection limit was 0.1 ppb.

Methylene Blue를 이용한 역미셀에서 물의 세 가지 상태에 대한 분광학적 연구 (Spectroscopic Study on Three States of Water in the Reverse Micelle Using Methylene Blue as a Probe)

  • 박범영;정갑상;유수창;최호섭
    • 대한화학회지
    • /
    • 제47권4호
    • /
    • pp.309-314
    • /
    • 2003
  • Cyclohexane에 녹아있는 Triton X-100/n-hexanol/water 계의 비이온성 역미셀(reverse micelle)에 대한 미세 환경정보를 알아보기 위해 methylene blue(MB)를 이용하여 흡광 및 형광 분광법으로 고찰하였다. 역미셀의 극성 중심(polar core)에서 물의 미세 상태에 대한 정보는 MB와 Triton X-100 사이의 착물형성과 용매화변색(solvatochromic)거동을 조사해 봄으로써 얻을 수 있었으며, 역미셀의 안쪽 극성 중심에서 3가지 상태로 존재함을 알 수 있었다. 물의 세 가지 상태에 대한 $W(=[H_2O]/[Surf])$값은 0.71, 4.98, 7.26으로 측정되었으며, 그에 대한 MB의 형광수명은 $15.45 ns{\pm}0.56$, $12.27 ns{\pm}0.79$, 그리고 $8.28 ns{\pm}0.82$으로 나타났다.

Selectivity of between K+ and Na+ Ions to 12-Crown-4: QSPR Analysis by a Monte Carlo Simulation Study

  • Kim, Hag-Sung
    • Bulletin of the Korean Chemical Society
    • /
    • 제29권2호
    • /
    • pp.431-437
    • /
    • 2008
  • The solvent effects on the relative free energies of binding of K+ and Na+ ions to 12-crown-4 and Dlog Ks (the difference of stability constant of binding) have been investigated by a Monte Carlo simulation of statistical perturbation theory (SPT) in several solvents. Comparing the relative free energies of binding of K+ and Na+ ions to 12-crown-4, in CH3OH of this study with experimental works, there is a good agreement among the studies. We have reported here the quantitative solvent-polarity relationships (QSPR) studied on the solvent effects the relative free energies of binding of K+ and Na+ ions to 12-crown-4. We noted that DN(donor number) dominates the differences in relative solvation Gibbs free energies of K+ and Na+ ions and DN dominates the negative values in differences in the stability constant (Dlog Ks) as well as the relative free energies of binding of K+ and Na+ ions to 12-crown-4 and p* (Kamlet-Tafts solvatochromic parameters) dominates the positive values in differences in the stability constant (Dlog Ks) as well as the relative free energies of binding of K+ and Na+ ions to 12-crown-4.

QSPR Analysis of Solvent Effect on Selectivity of 18-Crown-6 between $Nd^{3+}$ and $Eu^{3+}$ Ions: a Monte Carlo Simulation Study

  • Kim, Hag-Sung
    • Bulletin of the Korean Chemical Society
    • /
    • 제27권12호
    • /
    • pp.2011-2018
    • /
    • 2006
  • We have investigated the solvent effects on $\Delta log\;K_s $(the difference of stability constant of binding) and the different free energies of binding of $Nd^{3+}$ and $Eu^{3+}$ ions to 18-crown-6, i.e., the selectivity of $Nd^{3+}$ and $Eu^{3+}$ ions to 18-crown-6 using a Monte Carlo simulation of statistical perturbation theory (SPT) in diverse solvents. The stability constant ($\Delta log\;K_s $) of binding of $Nd^{3+}$ and $Eu^{3+}$ ions to 18-crown-6, in $CH_3OH$ was calculated in this study as -1.06 agrees well with the different experimental results of -0.44~-0.6, respectively. We have reported here the quantitative solvent-polarity relationships (QSPR) studied on the solvent effects the relative free energies of binding of $Nd^{3+}$ and $Eu^{3+}$ ions to 18-crown-6. From the calculated coefficients of QSPR, we have noted that solvent polarity (ET) and Kamlet -Tafts solvatochromic parameters (b ) dominate the differences in relative solvation Gibbs free energies of $Nd^{3+}$ and $Eu^{3+}$ ions but basicity (Bj) dominates the negative values in differences in the stability constant ($\Delta log\;K_s $) as well as the relative free energies of binding of $Nd^{3+}$ and $Eu^{3+}$ ions to 18-crown-6 and acidity (Aj) dominates the positive values in differences in the stability constant ($\Delta log\;K_s $) as well as the relative free energies of binding of $Nd^{3+}$ and $Eu^{3+}$ ions to 18-crown-6.