• Title/Summary/Keyword: Solvation potential

Search Result 15, Processing Time 0.02 seconds

Recent Development of Scoring Functions on Small Molecular Docking (소분자 도킹에서의 평가함수의 개발 동향)

  • Chung, Hwan Won;Cho, Seung Joo
    • Journal of Integrative Natural Science
    • /
    • v.3 no.1
    • /
    • pp.49-53
    • /
    • 2010
  • Molecular docking is a critical event which mostly forms Van der waals complex in molecular recognition. Since the majority of developed drugs are small molecules, docking them into proteins has been a prime concern in drug discovery community. Since the binding pose space is too vast to cover completely, many search algorithms such as genetic algorithm, Monte Carlo, simulated annealing, distance geometry have been developed. Proper evaluation of the quality of binding is an essential problem. Scoring functions derived from force fields handle the ligand binding prediction with the use of potential energies and sometimes in combination with solvation and entropy contributions. Knowledge-based scoring functions are based on atom pair potentials derived from structural databases. Forces and potentials are collected from known protein-ligand complexes to get a score for their binding affinities (e.g. PME). Empirical scoring functions are derived from training sets of protein-ligand complexes with determined affinity data. Because non of any single scoring function performs generally better than others, some other approaches have been tried. Although numerous scoring functions have been developed to locate the correct binding poses, it still remains a major hurdle to derive an accurate scoring function for general targets. Recently, consensus scoring functions and target specific scoring functions have been studied to overcome the current limitations.

Molecular dynamics simulation of short peptide in DPC micelle using explicit water solvent parameters

  • Kim, Ji-Hun;Yi, Jong-Jae;Won, Hyung-Sik;Son, Woo Sung
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.22 no.4
    • /
    • pp.139-143
    • /
    • 2018
  • Short antimicrobial peptide, A4W, have been studied by molecular dynamics (MD) simulation in an explicit dodecylphosphocholine (DPC) micelle. Peptide was aligned with DPC micelle and transferred new peptide-micelle coordinates within the same solvent box using specific micelle topology parameters. After initial energy minimization and equilibration, the conformation and orientation of the peptide were analyzed from trajectories obtained from the RMD (restrained molecular dynamics) or the subsequent free MD. Also, the information of solvation in the backbone and the side chain of the peptide, hydrogen bonding, and the properties of the dynamics were obtained. The results showed that the backbone residues of peptide are either solvated using water or in other case, they relate to hydrogen bonding. These properties could be a critical factor against the insertion mode of interaction. Most of the peptide-micelle interactions come from the hydrophobic interaction between the side chains of peptide and the structural interior of micelle system. The interaction of peptide-micelle, electrostatic potential and hydrogen bonding, between the terminal residues of peptide and the headgroups in micelle were observed. These interactions could be effect on the structure and flexibility of the peptide terminus.

Evaluation of Methyl Methacrylate-Butyl Methacrylate Copolymer Films and Kinetics of Nitrofurazone Release (메칠메타크릴레이트-부틸메타크릴레이트 공중합체 필름의 평가 및 니트로푸라존 방출의 속도론적 연구)

  • Chun, In-Koo
    • Journal of Pharmaceutical Investigation
    • /
    • v.17 no.3
    • /
    • pp.111-126
    • /
    • 1987
  • Methyl methacrylate-butyl methacrylate copolymer (MMBM)-dibutyl phthalate (DBP) films were investigated as a potential topical drug delivery system for the controlled release of nitrofurazone. The kinetic analysis of release data indicated that drug release followed a diffusion-controlled granular matrix model, where the quantity released per unit area is proportional to the square root of time. DBP of several hydrophobic plasticizers selected was found to give the highest release of nitrofurazone. However, hydrophilic plasticizers such as propylene glycol and polyethylene glycol 400 had no controlled release properties and acceptable film formation. The effects of changes in film composition, drug concentration, film thickness, pH of release medium, and temperature on the in vitro release of nitrofurazone were analyzed both theoretically and experimentally. The release rate constant (k') was found to be proportional to DBP content, pH, and the temperature of release medium, but independent of film thickness, and drug concentration in a range of 0.1-0.4% by weight. The linear relationship was found to exist between the log k' and DBP content. The release of nitrofurazone from MMBM-DBP (8:2) films was found to be an energy-linked process. Two energy terms were calculated ; the activation energy for matrix diffusion was 13.45 kcal/mole, and the heat of drug crystal solvation was 27.26-29.34 kcal/mole. Observation of scanning electron micrographs and microscopic photographs showed that the incorporation of DBP in films increased markedly the particle size of nitrofurazone dispersed in the film matrix, comparing with the fine dispersion of nitrofurazone in pure MMBM film alone.

  • PDF

Application of Separation Technology and Supercritical Fluids Process (초임계유체 공정과 분리기술의 응용)

  • Yoon, Soon-Do;Byun, Hun-Soo
    • Clean Technology
    • /
    • v.18 no.2
    • /
    • pp.123-143
    • /
    • 2012
  • Supercritical fluid technology (SFT) is recently one of the most new techniques, which has been interested various fields of related chemical industries. SFT is the most effective and practical technology with eco-friendly, energy-savings, and high efficiency as the technique using the advantages of supercritical fluid such as high solvation power, solubility, mass transfer rate, and diffusion rate. Especially, it is necessary to analyze, evaluate, and develop the potential of application techniques using SFT with these characterizations. Therefore in this review, the phase behavior in supercritical fluid at high temperature and pressure of monomers/polymers for the optimization of polymerization process are briefly described, and the preparation of molecularly imprinted polymers (MIPs) in supercritical fluid using supercritical polymerization and the performance evaluation of MIPs are introduced.

Studies on the Spectrophotometric Determination, Electrochemical Behavior of Heavy Lanthanide ions in Nonaqueous System and Heavy Chelates Complexes with Bidendate Ligands (Ⅱ) Electrochemical Behavior of Heavy Lanthanide Ions in Acetonitrile (무거운 란탄이온의 분광학적 정량, 비수용액에서의 전기화학적 거동 및 중금속이온과 두자리 리간드 착물에 관한 연구 (제 2 보))

  • Kang Sam-Woo;Park Chong-Min;Kim Il-Kwang;Do Lee-Mi;Lee Jong-Min
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.5
    • /
    • pp.483-490
    • /
    • 1993
  • Voltammetric behavior of heavy lanthanide ions has been investigated by the DC, DPP and CV in acetonitrile solution. The reduction of $Gd^{3+}, Tb^{3+}, Dy^{3+}, Ho^{3+}, Er^{3+}, Tm^{3+} 및 Lu^{3+} proceed by three-electron change to the metallic state with totally irreversibility in 0.1M tetraethylammonium perchlorate. However, the reduction of Yb(Ⅲ) proceeds in two steps $(Yb^{3+} + e^- \Leftrightarrow Yb^{2+} and Yb^{2+} + 2e^- → Yb^0)$. The first reduction of Yb(Ⅲ) showed quasi reversible behavior, but the second reduction was irreversible in cyclic voltammetry. The cathodic peak current showed adsorptive properties in high concentration with lower sweep rate. The electroreduction of heavy lanthanides in water-acetonitrile mixture has been studied. In water-acetonitrile mixture, the negative shift of the peak potential and the decrease peak current were observed increasing water concentration. Also the Yb(Ⅲ) reduction to Yb(Ⅲ) has been deviated from quasi-reversible character with increase water amount. These results drive from the high solvation abilities of water which has high donor number.

  • PDF