• 제목/요약/키워드: Solvation potential

검색결과 15건 처리시간 0.017초

소분자 도킹에서의 평가함수의 개발 동향 (Recent Development of Scoring Functions on Small Molecular Docking)

  • 정환원;조승주
    • 통합자연과학논문집
    • /
    • 제3권1호
    • /
    • pp.49-53
    • /
    • 2010
  • Molecular docking is a critical event which mostly forms Van der waals complex in molecular recognition. Since the majority of developed drugs are small molecules, docking them into proteins has been a prime concern in drug discovery community. Since the binding pose space is too vast to cover completely, many search algorithms such as genetic algorithm, Monte Carlo, simulated annealing, distance geometry have been developed. Proper evaluation of the quality of binding is an essential problem. Scoring functions derived from force fields handle the ligand binding prediction with the use of potential energies and sometimes in combination with solvation and entropy contributions. Knowledge-based scoring functions are based on atom pair potentials derived from structural databases. Forces and potentials are collected from known protein-ligand complexes to get a score for their binding affinities (e.g. PME). Empirical scoring functions are derived from training sets of protein-ligand complexes with determined affinity data. Because non of any single scoring function performs generally better than others, some other approaches have been tried. Although numerous scoring functions have been developed to locate the correct binding poses, it still remains a major hurdle to derive an accurate scoring function for general targets. Recently, consensus scoring functions and target specific scoring functions have been studied to overcome the current limitations.

Molecular dynamics simulation of short peptide in DPC micelle using explicit water solvent parameters

  • Kim, Ji-Hun;Yi, Jong-Jae;Won, Hyung-Sik;Son, Woo Sung
    • 한국자기공명학회논문지
    • /
    • 제22권4호
    • /
    • pp.139-143
    • /
    • 2018
  • Short antimicrobial peptide, A4W, have been studied by molecular dynamics (MD) simulation in an explicit dodecylphosphocholine (DPC) micelle. Peptide was aligned with DPC micelle and transferred new peptide-micelle coordinates within the same solvent box using specific micelle topology parameters. After initial energy minimization and equilibration, the conformation and orientation of the peptide were analyzed from trajectories obtained from the RMD (restrained molecular dynamics) or the subsequent free MD. Also, the information of solvation in the backbone and the side chain of the peptide, hydrogen bonding, and the properties of the dynamics were obtained. The results showed that the backbone residues of peptide are either solvated using water or in other case, they relate to hydrogen bonding. These properties could be a critical factor against the insertion mode of interaction. Most of the peptide-micelle interactions come from the hydrophobic interaction between the side chains of peptide and the structural interior of micelle system. The interaction of peptide-micelle, electrostatic potential and hydrogen bonding, between the terminal residues of peptide and the headgroups in micelle were observed. These interactions could be effect on the structure and flexibility of the peptide terminus.

메칠메타크릴레이트-부틸메타크릴레이트 공중합체 필름의 평가 및 니트로푸라존 방출의 속도론적 연구 (Evaluation of Methyl Methacrylate-Butyl Methacrylate Copolymer Films and Kinetics of Nitrofurazone Release)

  • 전인구
    • Journal of Pharmaceutical Investigation
    • /
    • 제17권3호
    • /
    • pp.111-126
    • /
    • 1987
  • Methyl methacrylate-butyl methacrylate copolymer (MMBM)-dibutyl phthalate (DBP) films were investigated as a potential topical drug delivery system for the controlled release of nitrofurazone. The kinetic analysis of release data indicated that drug release followed a diffusion-controlled granular matrix model, where the quantity released per unit area is proportional to the square root of time. DBP of several hydrophobic plasticizers selected was found to give the highest release of nitrofurazone. However, hydrophilic plasticizers such as propylene glycol and polyethylene glycol 400 had no controlled release properties and acceptable film formation. The effects of changes in film composition, drug concentration, film thickness, pH of release medium, and temperature on the in vitro release of nitrofurazone were analyzed both theoretically and experimentally. The release rate constant (k') was found to be proportional to DBP content, pH, and the temperature of release medium, but independent of film thickness, and drug concentration in a range of 0.1-0.4% by weight. The linear relationship was found to exist between the log k' and DBP content. The release of nitrofurazone from MMBM-DBP (8:2) films was found to be an energy-linked process. Two energy terms were calculated ; the activation energy for matrix diffusion was 13.45 kcal/mole, and the heat of drug crystal solvation was 27.26-29.34 kcal/mole. Observation of scanning electron micrographs and microscopic photographs showed that the incorporation of DBP in films increased markedly the particle size of nitrofurazone dispersed in the film matrix, comparing with the fine dispersion of nitrofurazone in pure MMBM film alone.

  • PDF

초임계유체 공정과 분리기술의 응용 (Application of Separation Technology and Supercritical Fluids Process)

  • 윤순도;변헌수
    • 청정기술
    • /
    • 제18권2호
    • /
    • pp.123-143
    • /
    • 2012
  • 초임계유체기술은 최근 다양한 화학 산업 분야에서 새로운 관심을 모으고 있는 신기술의 하나라 할 수 있다. 초임계유체기술은 높은 용해성, 빠른 침투성, 빠른 물질 이동 등의 초임계유체 장점을 이용한 기술로써 친환경, 에너지 절감, 고효율성을 가진 현재로서 가장 효과적이고 실용적인 기술이라 하겠다. 이러한 특징을 가진 초임계유체기술을 이용한 응용 기술의 잠재력을 분석 및 평가하고 개발하는 것은 필수적이다. 따라서 본 총설에서는 초임계유체기술의 응용 측면에서 초임계유체내에서 고분자 중합 공정의 최적화를 위한 기초자료인 모노머/고분자의 고온 고압에서 초임계유체 내에서의 상거동 현상을 설명하고, 이러한 자료를 통해 초임계유체 내에서 특정물질을 분리 할 수 있는 분자인식고분자의 제조와 성능 평가에 대해 소개하였다.

무거운 란탄이온의 분광학적 정량, 비수용액에서의 전기화학적 거동 및 중금속이온과 두자리 리간드 착물에 관한 연구 (제 2 보) (Studies on the Spectrophotometric Determination, Electrochemical Behavior of Heavy Lanthanide ions in Nonaqueous System and Heavy Chelates Complexes with Bidendate Ligands (Ⅱ) Electrochemical Behavior of Heavy Lanthanide Ions in Acetonitrile)

  • 강삼우;박종민;김일광;도이미;이종민
    • 대한화학회지
    • /
    • 제37권5호
    • /
    • pp.483-490
    • /
    • 1993
  • 무거운 란탄족 금속이온의 전기화학적 거동을 acetonitrile 용액에서 직류 및 펄스차이 폴라로그래피 및 순환전압전류법으로 연구하였다. $Gd^{3+}, Tb^{3+}, Dy^{3+}, Ho^{3+}, Er^{3+}, Tm^{3+} 및 Lu^{3+} 은 0.1M TEAP 지지전해질에서 3전자 전비가역반응이었으며, Yb^{3+}는 단계적인 환원반응으로 나타났다. 순환전압전류법에서 Yb^{3+}의 첫번째 환원반응은(Yb^{3+}$$e^-\Leftrightarrow Yb^{2+})$ 유사가역적 거동을 나타냈으며, 두번째 환원반응은 전비가역적 거동을 나타냈다. 환원봉우리전류는 짙은 농도범위에서 주사속도가 저속일수록 흡착특성을 나타냈다. 물-acetonitrile 혼합용매에서 무거운 란탄이온은 물의 부피비가 증가할수록 음전위 이동하였으며 환원전류는 감소하였다. 이같은 현상은 acetonitrile보다 주개수가 큰 물의 용매화 능력이 증가하는 것으로 생각된다. 또한 Yb(Ⅲ)의 첫번째 환원과는 몰 부피비가 증가함에 따라 유사가역적 거동에서 벗어나는 현상이었다.

  • PDF