• 제목/요약/키워드: Solvated proton

검색결과 4건 처리시간 0.019초

Preliminary Molecular Dynamics Simulations of the OSS2 Model for the Solvated Proton in Water

  • 이송희
    • Bulletin of the Korean Chemical Society
    • /
    • 제22권8호
    • /
    • pp.847-849
    • /
    • 2001
  • The OSS2(Ojame-Shavitt-Singer 2)[L. Ojame et al., J. Chem. Phys. 109, 5547 (1998)] model as a dissociable water model is examined in order to study the dynamics of H+ in water. MD simulations for 216 water system, 215 water + H+ ion system, and 215 water + OH- ion system using the OSS2 model at 298.15 K with the use of Ewald summation are carried out. The calculated O-H radial distribution functions for these systems are essentially the same and are in very good agreement with that obtained by Ojame.

Molecular Dynamics Simulations of the OSS2 Model for Water and Oxonium Ion Monomers, and Protonated Water Clusters

  • Lee, Song-Hi
    • Bulletin of the Korean Chemical Society
    • /
    • 제23권1호
    • /
    • pp.107-111
    • /
    • 2002
  • The OSS2 (Oj?me-Shavitt-Singer 2)[L. Oj?me et al., J. Chem. Phys. 109, 5547 (1998)] model for the solvated proton in water is examined for $H_2O,\;H_3O^+,\;H_5O_2^+,\;H_7O_3^+,\;and\;H_9O_4^-$ by molecular dynamics (MD) simulations. The equilibrium molecular geometries and energies obtained from MD simulations at 5.0 and 298.15 K agree very well with the optimized calculations.

Implications of the Periodicity in NMR Chemical Shifts and Temperature Coefficients of Amide Protons in Helical Peptides

  • Suh, Jeong-Yong;Choi, Byong-Seok
    • 한국자기공명학회논문지
    • /
    • 제8권2호
    • /
    • pp.127-138
    • /
    • 2004
  • We obtained the chemical shifts of amide protons (NHs) in helical peptides at various temperatures and trifluoroethanol (TFE) concentrations using 2-dimensional NMR spectroscopy. These NH chemical shifts and their temperature dependence exhibited characteristic periodicity of 3-4 residues per cycle along the helix, where downfield shifted NHs showed larger temperature dependence. In an attempt to understand these observations, we focused on hydrogen bonding changes in the peptides and examined the validity of two possible explanations: (1) changes in intermolecular hydrogen bonding caused by differential solvation of backbone carbonyl groups by TFE, and (2) changes in intramolecular hydrogen bonding due to disproportionate variations in the hydrogen bonding within the peptide helix. Interestingly, the slowly exchanging NHs, which were on the hydrophobic side of the helix, showed consistently larger temperature dependences. This could not be explained by the differential solvation assumption, because the slowly exchanging NHs would become more labile if the preceding carbonyl groups were preferentially solvated by TFE. We suggest that the disproportionate changes in intramolecular hydrogen bonding better explain both the temperature dependence and the exchange behavior observed in this study.

  • PDF