Browse > Article
http://dx.doi.org/10.5012/bkcs.2002.23.1.107

Molecular Dynamics Simulations of the OSS2 Model for Water and Oxonium Ion Monomers, and Protonated Water Clusters  

Lee, Song-Hi (Department of Chemistry, Kyungsung University)
Publication Information
Abstract
The OSS2 (Oj?me-Shavitt-Singer 2)[L. Oj?me et al., J. Chem. Phys. 109, 5547 (1998)] model for the solvated proton in water is examined for $H_2O,\;H_3O^+,\;H_5O_2^+,\;H_7O_3^+,\;and\;H_9O_4^-$ by molecular dynamics (MD) simulations. The equilibrium molecular geometries and energies obtained from MD simulations at 5.0 and 298.15 K agree very well with the optimized calculations.
Keywords
MD simulation; Optimized calculation; OSS2 potential; Molecular geometries and energetics;
Citations & Related Records

Times Cited By Web Of Science : 6  (Related Records In Web of Science)
Times Cited By SCOPUS : 3
연도 인용수 순위
1 Weber, T. A.; Stillinger, F. H. J. Chem. Phys. 1982, 76, 4028   DOI
2 Weber, T. A.; Stillinger, F. H. J. Chem. Phys. 1982, 77, 4150   DOI
3 Ojame, L.; Shavitt, I.; Singer, S. J. Int. J. Quantum Chem., Quantum Chem. Symp. 1995, 29, 657
4 Haymet, A. D. J.; Oxtoby, D. W. J. Chem. Phys. 1982, 77, 2466   DOI
5 Hariharan, P. C.; Pople, J. A. Theor. Chim. Acta 1973, 28, 213   DOI
6 Srewart, J. J. P. J. Comput. Phys. 1989, 10, 209; 1989, 10, 221; 1990, 11, 543
7 Muguet, F. F. J. Mol. Struct. (Theochem) 1996, 368, 173   DOI   ScienceOn
8 Marx, D.; Tuckerman, M. E.; Hutter, J.; Parinello, M. Nature 1999, 397, 601   DOI   ScienceOn
9 Dang, L. X. J. Chem. Phys. 1992, 96, 6970
10 Dang, L. X.; Rice, J. E.; Caldwell, J.; Kollman, P. A. J. Am. Chem. Soc. 1991, 113, 2481   DOI
11 Dang, L. X.; Smith, D. E. J. Chem. Phys. 1993, 99, 6950   DOI
12 Smith, D. E.; Dang, L. X. J. Chem. Phys. 1994, 100, 3757   DOI   ScienceOn
13 Agmon, N. Chem. Phys. Lett. 2000, 319, 247   DOI   ScienceOn
14 Moller, C.; Plesset, M. S. Phys. Rev. 1934, 46, 618   DOI
15 Stillinger, F. H.; David, C. W. J. Chem. Phys. 1978, 69, 1473   DOI
16 Ojame, L.; Shavitt, I.; Singer, S. J. J. Chem. Phys. 1998, 109, 5547   DOI   ScienceOn
17 Singer, S. J.; McDonald, S.; Ojame, L. J. Chem. Phys. 2000, 112, 710   DOI   ScienceOn
18 Lee, S. H. Bull. Korean Chem. Soc. 2001, 22, 847
19 Gauss, K. F. J. Reine Angew. Math. 1829, IV, 232
20 Hoover, W. G.; Ladd, A. J. C.; Moran, B. Phys. Rec. Lett. 1982, 48, 1818   DOI
21 Evans, D. J. J. Chem. Phys. 1983, 78, 3297   DOI
22 Evans, D. J.; Morris, G. P. Comput. Phys. Rep. 1984, 1, 297   DOI   ScienceOn
23 Benedict, W. S.; Gailar, N.; Plyler, E. K. J. Chem. Phys. 1956, 24, 1139   DOI
24 Anastasiou, N.; Fincham, D. Comput. Phys. Commun. 1982, 25, 159   DOI   ScienceOn
25 Bunker, P. R.; Amano, T.; Spirko, V. J. Mol. Spectrosc. 1984, 107, 208   DOI   ScienceOn
26 Spirko, V.; Kraemer, W. P. J. Mol. Spectrosc. 1989, 134, 72   DOI   ScienceOn
27 de Leeuw, S. W.; Perram, J. W.; Smith, E. R. Proc. R. Soc. London 1980, A373, 27   DOI
28 Caldwell, J.; Dang, L. X.; Kollman, P. A. J. Am. Chem. Soc. 1990, 112, 9144   DOI
29 Evans, D. J.; Hoover, W. G.; Failor, B. H.; Moran, B.; Ladd, A. J. C. Phys. Rev. A 1983, 28, 1016   DOI
30 Gear, W. C. Numerical Initial Value Problems in Ordinary Differential Equations; McGraw-Hill: New York, 1965
31 Weber, T. A.; Stillinger, F. H. J. Phys. Chem. 1982, 86, 1314   DOI
32 Stillinger, F. H.; David, C. W. J. Chem. Phys. 1980, 73, 3384   DOI
33 Stillinger, F. H.; Weber, T. A. Chem. Phys. Lett. 1981, 79, 259   DOI   ScienceOn