• 제목/요약/키워드: Solution-based process

검색결과 1,981건 처리시간 0.04초

열전도에 의해 지배되는 이성분혼합물의 응고문제에 대한 해석해 (Analytical solution to the conduction-dominated solidification of a binary mixture)

  • 정재동;유호선;노승탁;이준식
    • 대한기계학회논문집B
    • /
    • 제20권11호
    • /
    • pp.3655-3665
    • /
    • 1996
  • An analytical solution is presented for the conduction-dominated solidification of a binary mixture in a semi-infinite medium. The present approach differs from that of other solution by these four characteristics. (1) Solid fraction is determined from the phase diagram, (2) thermophysical properties in mushy zone are weighted according to the local solid fraction, (3) non-equilibrium solidification can be simulated and (4) the cooling condition of under-eutectic temperature can be simulated. Up to now, almost all analyses are based on the assumption of constant properties in mushy zone and solid fraction linearly with temperature or length. The validation for these assumptions, however, shows that serious error is found except some special cases. The influence of microscopic model on the macroscopic temperature profile is very small and can be ignored. But the solid fraction and average solid concentration which directly influence the quality of materials are drastically changed by the microscopic models. An approximate solution using the method of weighted residuals is also introduced and shows good agreement with the analytical solution. All calculations are performed for NH$_{4}$Cl-H$_{2}$O and Al-Cu system.

Effect of Al on Structural and Magnetic Characteristics of CoCrFeNiMnAlx High Entropy Alloys

  • Majid Tavoosi;Ali Ghasemi;Gholam Reza Gordani;Mohammad Reza Loghman Estarki
    • 한국재료학회지
    • /
    • 제33권3호
    • /
    • pp.95-100
    • /
    • 2023
  • This research examines the effect of adding aluminum on the structural, phasic, and magnetic properties of CoCrFe NiMnAlx high-entropy alloys. To this aim, the arc-melt process was used under an argon atmosphere for preparing cast samples. The phasic, structural, and magnetic properties of the samples were characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM), and vibrational magnetometry (VSM) analyses. Based on the results, the addition of aluminum to the compound caused changes in the crystalline structure, from FCC solid solution in the CoCrFeNiMn sample to CoCrFeNiMnAl BBC solid solution. It was associated with changes in the magnetic property of CoCrFeNiMnAlx high-entropy alloys, from paramagnetic to ferromagnetic. The maximum saturation magnetization for the CoCrFeNiMnAl casting sample was estimated to be around 79 emu/g. Despite the phase stability of the FCC solid solution with temperature, the solid solution phase formed in the CrCrFeNiMnAl high-entropy compound was not stable, and changed into FCC solid solution with temperature elevation, causing a reduction in saturation magnetization to about 7 emu/g.

Removal of Cd(II) and Cu(II) from Aqueous Solution by Agro Biomass: Equilibrium, Kinetic and Thermodynamic Studies

  • Reddy, Desireddy Harikishore Kumar;Lee, Seung-Mok;Seshaiah, Kalluru
    • Environmental Engineering Research
    • /
    • 제17권3호
    • /
    • pp.125-132
    • /
    • 2012
  • The removal of Cd(II) and Cu(II) from aqueous solution by an agricultural solid waste biomass prepared from Moringa oleifera bark (MOB) was investigated. The biosorbent was characterized by Fourier transform infrared spectroscopy and elemental analysis. Furthermore, the effect of initial pH, contact time, biosorbent dosage, initial metal ion concentration and temperature on the biosorption of Cd(II) and Cu(II) were studied using the batch sorption technique. Kinetic studies indicated that the biosorption process of the metal ions followed the pseudo-second order model. The biosorption data was analyzed by the Langmuir, Freundlich, Dubinin-Radushkevich, and Temkin isotherm models. Based on the Langmuir isotherm, the maximum biosorption capacities for Cd(II) and Cu(II) onto MOB were 39.41 and 36.59 mg/g at 323 K, respectively. The thermodynamic parameters, Gibbs free energy (${\Delta}G^o$), enthalpy (${\Delta}H^o$), and entropy (${\Delta}S^o$) changes, were also calculated, and the values indicated that the biosorption process was endothermic, spontaneous and feasible in the temperature range of 303-323 K. It was concluded that MOB powder can be used as an effective, low cost, and environmentally friendly biosorbent for the removal of Cd(II) and Cu(II) ions from aqueous solution.

Analytical and numerical study of temperature stress in the bi-modulus thick cylinder

  • Gao, Jinling;Huang, Peikui;Yao, Wenjuan
    • Structural Engineering and Mechanics
    • /
    • 제64권1호
    • /
    • pp.81-92
    • /
    • 2017
  • Many materials in engineering exhibit different modulus in tension and compression, which are known as bi-modulus materials. Based on the bi-modulus elastic theory, a modified semi-analytical model, by introducing a stress function, is established in this paper to study the mechanical response of a bi-modulus cylinder placed in an axisymmetric temperature field. Meanwhile, a numerical procedure to calculate the temperature stresses in bi-modulus structures is developed. It is proved that the bi-modulus solution can be degenerated to the classical same modulus solution, and is in great accordance with the solutions calculated by the semi-analytical model proposed by Kamiya (1977) and the numerical solutions calculated both by the procedure complied in this paper and by the finite element software ABAQUS, which demonstrates that the semi-analytical model and the numerical procedure are accurate and reliable. The result shows that the modified semi-analytical model simplifies the calculation process and improves the speed of computation. And the numerical procedure simplifies the modeling process and can be extended to study the stress field of bi-modulus structures with complex geometry and boundary conditions. Besides, the necessity to introduce the bi-modulus theory is discussed and some suggestions for the qualitative analysis and the quantitative calculation of such structure are proposed.

원료의 선택 및 혼합비율의 변경 횟수를 최소화하기 위한 정수계획법 모형 및 근사해 발견 기법(응용 부문) (An Integer Programming Model and Heuristic Algorithm to Minimize Setups in Product Mix)

  • 한정희;이영호;김성인;심보경
    • 한국경영과학회:학술대회논문집
    • /
    • 한국경영과학회 2006년도 추계학술대회
    • /
    • pp.127-133
    • /
    • 2006
  • Minimizing the total number of setup changes of a machine increases the throughput and improves the stability of a production process, and as a result enhances the product quality. In this context, we consider a new product-mix problem that minimizes the total number of setup changes while producing the required quantities of a product over a given planning horizon. For this problem, we develop a mixed integer programming model. Also, we develop an efficient heuristic algorithm to find a feasible solution of good quality within reasonable time bounds. Computational results show that the developed heuristic algorithm finds a feasible solution as good as the optimal solution in most test problems. Also, we developed a web based scheduling and monitoring system for a zinc alloy production process using the developed heuristic algorithm. By using this system, we could find a monthly zinc alloy production schedule that significantly reduces the total number of setup changes.

  • PDF

Effect of Soft-annealing on the Properties of CIGSe Thin Films Prepared from Solution Precursors

  • Sung, Shi-Joon;Park, Mi Sun;Kim, Dae-Hwan;Kang, Jin-Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권5호
    • /
    • pp.1473-1476
    • /
    • 2013
  • Solution-based deposition of $CuIn_xGa_{1-x}Se_2$ (CIGSe) thin films is well known non-vacuum process for the fabrication of CIGSe solar cells. However, due to the usage of organic chemicals in the preparation of CIG precursor solutions, the crystallization of the polycrystalline CIGSe and the performance of CIGSe thin film solar cells were significantly affected by the carbon residues from the organic chemicals. In this work, we have tried to eliminate the carbon residues in the CIG precursor thin films efficiently by using soft-annealing process. By adjusting soft-annealing temperature, it is possible to control the amount of carbon residues in CIG precursor thin films. The reduction of the carbon residues in CIG precursors by high temperature soft-annealing improves the grain size and morphology of polycrystalline CIGSe thin films, which are also closely related with the electrical properties of CIGSe thin film solar cells.

Solution Plasma Synthesis of BNC Nanocarbon for Oxygen Reduction Reaction

  • Lee, Seung-Hyo
    • 한국표면공학회지
    • /
    • 제51권5호
    • /
    • pp.332-336
    • /
    • 2018
  • Alkaline oxygen electrocatalysis, targeting anion exchange membrane alkaline-based metal-air batteries has become a subject of intensive investigation because of its advantages compared to its acidic counterparts in reaction kinetics and materials stability. However, significant breakthroughs in the design and synthesis of efficient oxygen reduction catalysts from earth-abundant elements instead of precious metals in alkaline media still remain in high demand. One of the most inexpensive alternatives is carbonaceous materials, which have attracted extensive attention either as catalyst supports or as metal-free cathode catalysts for oxygen reduction. Also, carbon composite materials have been recognized as the most promising because of their reasonable balance between catalytic activity, durability, and cost. In particular, heteroatom (e.g., N, B, S or P) doping on carbon materials can tune the electronic and geometric properties of carbon, providing more active sites and enhancing the interaction between carbon structure and active sites. Here, we focused on boron and nitrogen doped nanocarbon composit (BNC nanocarbon) catalysts synthesized by a solution plasma process using the simple precursor of pyridine and boric acid without further annealing process. Additionally, guidance for rational design and synthesis of alkaline ORR catalysts with improved activity is also presented.

Improvement on Coupling Technique Between COMSOL and PHREEQC for the Reactive Transport Simulation

  • Dong Hyuk Lee;Hong Jang;Hyun Ho Cho;Jeonghwan Hwang;Jung-Woo Kim
    • 방사성폐기물학회지
    • /
    • 제21권1호
    • /
    • pp.175-182
    • /
    • 2023
  • APro, a modularized process-based total system performance assessment framework, was developed at the Korea Atomic Energy Research Institute (KAERI) to simulate radionuclide transport considering coupled thermal-hydraulic-mechanical-chemical processes occurring in a geological disposal system. For reactive transport simulation considering geochemical reactions, COMSOL and PHREEQC are coupled with MATLAB in APro using an operator splitting scheme. Conventionally, coupling is performed within a MATLAB interface so that COMSOL stops the calculation to deliver the solution to PHREEQC and restarts to continue the simulation after receiving the solution from PHREEQC at every time step. This is inefficient when the solution is frequently interchanged because restarting the simulation in COMSOL requires an unnecessary setup process. To overcome this issue, a coupling scheme that calls PHREEQC inside COMSOL was developed. In this technique, PHREEQC is called through the "MATLAB function" feature, and PHREEQC results are updated using the COMSOL "Pointwise Constraint" feature. For the one-dimensional advection-reaction-dispersion problem, the proposed coupling technique was verified by comparison with the conventional coupling technique, and it improved the computation time for all test cases. Specifically, the more frequent the link between COMSOL and PHREEQC, the more pronounced was the performance improvement using the proposed technique.

Improved FMM for well locations optimization in in-situ leaching areas of sandstone uranium mines

  • Mingtao Jia;Bosheng Luo;Fang Lu;YiHan Yang;Meifang Chen;Chuanfei Zhang;Qi Xu
    • Nuclear Engineering and Technology
    • /
    • 제56권9호
    • /
    • pp.3750-3757
    • /
    • 2024
  • Rapidly obtaining the coverage characteristics of leaching solution in In-situ Leaching Area of Sandstone Uranium Mines is a necessary condition for optimizing well locations reasonably. In the presented study, the improved algorithm of the Fast Marching Method (FMM) was studied for rapidly solving coverage characteristics to replace the groundwater numerical simulator. First, the effectiveness of the FMM was verified by simulating diffusion characteristics of the leaching solution in In-situ Leaching Area. Second, based on the radial flow pressure equation and the interaction mechanism of the front diffusion of production and injection well flow field, an improved FMM which is suitable for In-situ Leaching Mining, was developed to achieve the co-simulation of production and injection well. Finally, the improved algorithm was applied to engineering practice to guide the design and production. The results show that the improved algorithm can efficiently solve the coverage characteristics of leaching solution, which is consistent with those obtained from traditional numerical simulators. In engineering practice, the improved FMM can be used to rapidly analyze the leaching process, delineate Leaching Blind Spots, and evaluate the rationality of well pattern layout. Furthermore, it can help to achieve iterative optimization and rapid decision-making of production and injection well locations under largescale mining area models.

퍼지 모델 기반 다목적 제어기의 설계와 자기부상열차 자동운전시스템에의 적용 (Design of Fuzzy Model-based Multi-objective Controller and Its Application to MAGLEV ATO system)

  • 강동오;양세현;변증남
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1998년도 추계학술대회 학술발표 논문집
    • /
    • pp.211-217
    • /
    • 1998
  • Many practical control problems for the complex, uncertain or large-scale plants, need to simultaneously achieve a number of objectives, which may conflict or compete with each other. If the conventional optimization methods are applied to solve these control problems, the solution process may be time-consuming and the resulting solution would ofter lose its original meaning of optimality. Nevertheless, the human operators usually performs satisfactory results based on their qualitative and heuristic knowledge. In this paper, we investigate the control strategies of the human operators, and propose a fuzzy model-based multi-objective satisfactory controller. We also apply it to the automatic train operation(ATO) system for the magnetically levitated vehicles(MAGLEV). One of the human operator's strategies is to predict the control result in order to find the meaningful solution. In this paper, Takagi-Sugeno fuzzy model is used to simulated the prediction procedure. Another str tegy is to evaluate the multiple objectives with respect to their own standards. To realize this strategy, we propose the concept of a satisfactory solution and a satisfactory control scheme. The MAGLEV train is a typical example of the uncertain, complex and large-scale plants. Moreover, the ATO system has to satisfy multiple objectives, such as seed pattern tracking, stop gap accuracy, safety and riding comfort. In this paper, the speed pattern tracking controller and the automatic stop controller of the ATO system is designed based on the proposed control scheme. The effectiveness of the ATO system based on the proposed scheme is shown by the experiments with a rotary test bed and a real MAGLEV train.

  • PDF