• Title/Summary/Keyword: Solution viscosity

Search Result 777, Processing Time 0.03 seconds

Physical Property and Optimal Operating Condition in the Salting-out Dye Crystallization System (염료·염석결정화계에서 물성과 최적조업조건)

  • Pyun, Yu Ri;Han, Hyun Kak;Jung, Hyong Ki
    • Korean Chemical Engineering Research
    • /
    • v.47 no.2
    • /
    • pp.157-162
    • /
    • 2009
  • In this paper, the density, viscosity and solubility are measured to know the physical properties of dye. By changing the concentration of dye solution, the density change of the dye solution was very small and the viscosity of the dye solution was increased. Also, by changing the temperature of dye solution, the density change of the dye solution was increased but the viscosity of the dye solution was decreased. Solubility of dye conducts under the changing the salt and concentration of dye. In 20 wt% of dye and 15 wt% KCl, the amount of dye crystal is maximal. Also, batch salting-out experiments were performed with various conditions to know the optimal operating conditions of dye crystal. Under the various experiments, optimal operating condition was found based on amount of dye; added 15 wt% KCl, $25^{\circ}C$ temperature, 100 RPM, added at once.

Analysis of Fully Developed Multilayer Flow in Microchannel with a Rectangular Cross Section (직사각형 단면을 갖는 미세채널에서 완전 발달된 다층유동에 관한 해석)

  • Kim, Jung-Kyung;Jung, Chan-Il;Jang, Jun-Keun;Yoo, Jung-Yul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.5
    • /
    • pp.644-654
    • /
    • 2003
  • An analytical solution for a vertically stratified viscous flow in a microchannel with a rectangular cross-section is constructed, assuming fully developed laminar flow where the interfaces between the fluid layers are flat. Although the solution is for n-layer flow, restricted results to symmetrical three-layer flow are presented to investigate the effects of the viscosity and thickness ratios of the fluid layers and the aspect ratio of the microchannel on the flow field. Relations between the flow rate and thickness ratios of the fluid layers with varying viscosity distributions are found, considering the cross -sectional velocity profiles which vary noticeably with the three parameters and differ significantly from the velocity profiles of the flow between infinite parallel plates. Interfacial instability induced by the viscosity stratification in the microchannel is discussed referring to previous studies on the instability analysis for plane multilayer flow. Exact solution derived in the present study can be used for examining a diffusion process and three -dimensional stability analysis. More works are needed to formulate the equations including the effects of interfacial' tension between immiscible liquids and surface wettability which are important in microscale transport phenomena.

A STUDY ON FLOW IN A SLIT NOZZLE FOR DISPENSING A LOW-VISCOSITY SOLUTION OF SINGLE-WALLED CARBON NANOTUBES (저점성 SWNT 분산액 도포용 슬릿 노즐 설계를 위한 유동해석)

  • Shon, B.C;Kwak, H.S.;Lee, S.H.
    • Journal of computational fluids engineering
    • /
    • v.14 no.1
    • /
    • pp.78-85
    • /
    • 2009
  • A combined theoretical and numerical study is conducted to design a slit nozzle for large-area liquid coating. The objectives are to guarantee the uniformity in the injected flow and to provide the capability of explicit control of flow rate. The woking fluid is a dilute aqueous solution containing single-walled carbon nanotubes and its low viscosity and the presence of dispersed materials pose technical hurdles. A theoretical analysis leads to a guideline for the geometric design of a slit nozzle. The CFD-based numerical experiment is employed as a verification tool. A new flow passage unit, connected to the nozzle chamber, is proposed to permit the control of flow rate by using the commodity pressurizer. The numerical results confirm the feasibility of this idea. The optimal geometry of internal structure of the nozzle has been searched for numerically and the related issues are discussed.

Morphology Characteristics of Insulating Laser based on Aqueous Polymer Resin Fabricated by Ultrasonic Spray Coating Process (수성 폴리머 도료를 이용한 초음파 스프레이 공정으로 형성된 폴리머 절연층 미세구조 특성)

  • Yu, Jeong-Mo;Park, Chae-Won;Eom, Hyeon-Jin
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.136-136
    • /
    • 2016
  • Commonly used oil-based polymer resin has environmental and safety issues. Many researches for replacing the harmful solvent-borne resins to water-borne resins have been investigated to purify harmful environmental resources and follow the export and import of hazardous materials regulations. In this research, ultrasonic spray coatings of aqueous polymer resin were studied to fabricate thin insulating layer (${\sim}{\mu}m$) on the rectangular copper wire. It needs to have appropriate wettability between resin and substrate during the ultrasonic spray coating process to coat aqueous polymer uniformly. Furthermore, stabilities of coating solution and fabricating process are required to form thin insulating layer on the substrate. In here, physical characteristics such as viscosity of 6 types of commercial polymer dispersions and emersions were analyzed to confirm compatibility for ultrasonic spray coating process. These resins were dissolved in isopropyl alcohol, used for true solvent, and were diluted with ethanol, utilized for diluent. Also, solubilities, dispersion characteristics, and viscosities of these diluted polymer resin solutions were confirmed. Dispersion characteristic and viscosity of coating solution affects jetting of ultrasonic spray coating and these jetting characteristics influence morphologies of insulating layer. In conclusion, we have known that aqueous polymer solution should have outstanding dispersion characteristic and certain range of viscosity to fabricate thin polymer insulating layer uniformly with ultrasonic spray coating.

  • PDF

Study on Rheological and Phermal Properties of Dioiscorea batatas DECAISNE Starch (마(Dioscorea batatas DECAISNE)전분의 Rheology 및 열적 특성에 관한 연구)

  • 최일숙;이임선;구성자
    • Korean journal of food and cookery science
    • /
    • v.8 no.1
    • /
    • pp.57-63
    • /
    • 1992
  • The purpose of this study was to investigate the rheological and thermal properties of yam starch. Yam starch had a hydrodynamic volume with the intrinsic viscosity,[$\eta$], of 0.29dl/g deionized water. The values of the intrinsic viscosity of yam starch, determined to pH 2-11, varied between 0.07 to 0.18 dl/g. The highest intrinsic viscosity was obtained at pH 7. At salt concentrations 0-0.2 M NaCl, the intrinsic viscosity of yam starch was decreased up to 0.05 M NaCl concentration then increased to 0.07 M NaCl concentration and remained constant to reach 0.2 M NaCl concentration. The overlap parameter, calculated with the intrinsic vicosity data, was 3.45 g/dl in deionized water. The thermal properties of yam starch were investigated by Differential Scanning Calorimetry. Three endotherms were observed both pH solution and salt concentation. In the presence of pH 9, the onset temperature of gelatinization peak was the lowest temperature of 50.$32^{\circ}C$ and the enthalpy ($\Delta$H) was increased in this solution. The effect of salt on the thermal properties of yam starch was determined at salt concetration of 0-0.2 M NaCl. The enthalpy significantly decreased to salt concentration 0.07 M NaCl and the lowest onset temperature of this concentration was 52.$90^{\circ}C$.

  • PDF

유기 Hectorite Gel의 Rheology에 미치는 극성연가제에 관한 연구

  • 김창규
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.10 no.1
    • /
    • pp.49-74
    • /
    • 1984
  • Rheology of gels prepared with stearyl dimethyl benzyl ammonium hectorite (SDBAH) and various polar additives in n-butyl acetate was investigated by measuring the viscosity and rheogram. Including generally recognized polar additives, additional studies on the rheogram and viscosity were made with ether-type methyl cellosolve and carbitol, with dimethyl sulfoxide (DMSO) having sulfonyl group, and furthermore with above-mentioned polar additives containing small quantity of water, It was observed that molecular size, dipole moments and dielectric constants of polar additives had a great influence on viscosity increase and rheology of SDBAH gel, and the increase of SDBAH interlayer spacing was important factor in gel formation and viscosity change. It was also shown that thixotropy effect was increased with the increase of polar additive concentration, finally changed to rheopexy from thixotropy as the concentration of polar additives was increased more than about 40% of SDBAH weight. In addition thixotropy changed to rheopexy as the increase of shear rate. It was further found that the aqueous solutions of polar additives (water content, 5-25%) had more effects on rheology than additives without water, and particularly 95clo DMSO solution was the most effective. And the optimum concentration of polar additives showing maximum viscosity in the same SDBAH concentration system was examined.

  • PDF

Preparation of Regenerated Cellulose Fiber via Carbonation. I. Carbonation and Dissolution in an Aqueous NaOH Solution

  • Oh, Sang Youn;Yoo, Dong Il;Shin, Younsook;Lee, Wha Seop;Jo, Seong Mu
    • Fibers and Polymers
    • /
    • v.3 no.1
    • /
    • pp.1-7
    • /
    • 2002
  • Cellulose carbonate was prepared by the reaction of cellulose pulp and $CO_2$ with treatment reagents, such as aqueous $Zncl_2$ (20-40 wt%) solution, acetone or ethyl acetate, at -5-$0^{\circ}C$ and 30-40 bar ($CO_2$) for 2 hr. Among the treatment reagents, ethyl acetate was the most effective. Cellulose carbonate was dissolved in 10% sodium hydroxide solution containing zinc oxide up to 3 wt% at -5-$0^{\circ}C$. Intrinsic viscosities of raw cellulose and cellulose carbonate were measured with an Ubbelohde viscometer using 0.5 M cupriethylenediamine hydroxide (cuen) as a solvent at $20^{\circ}C$ according to ASTM D1795 method. The molecular weight of cellulose was rarely changed by carbonation. Solubility of cellulose carbonate was tested by optical microscopic observation, UV absorbance and viscosity measurement. Phase diagram of cellulose carbonate was obtained by combining the results of solubility evaluation. Maximum concentration of cellulose carbonate for soluble zone was increased with increasing zinc oxide content. Cellulose carbonate solution in good soluble zone was transparent and showed the lowest absorbance and the highest viscosity. The cellulose carbonate and its solution were stable in refrigerator (-$5^{\circ}C$ and atmospheric pressure).

Study on rheological characterization of Gellan gum Produced by Pseudomonas elodea -Comparative Studies on Rheological Characterization of Gellan gum and Agar- (Pseudomonas elodea에 의해서 생산된 Gellan gum과 Agar의 rheology 특성 비교연구)

  • 권혜숙;구성자
    • Korean journal of food and cookery science
    • /
    • v.4 no.1
    • /
    • pp.17-26
    • /
    • 1988
  • The polysaccharide produced by pseudomonas elodea, Gellan gum, was rheologically characterized, compared with agar. Rheological properties were determined from the change in the value of intrinsic viscosity with the pH and salt concentration. At the range of pH 2∼ll and salt 0∼0.16M KC1, the intrinsic viscosity of Gellan gum ranged from 8.8 to 21.2dl/g and agar ranged from 1.97 to 11.46d1/g. In the absence of salt, the intrinsic viscosity of Gellan gum increased as the pH of solution increased up to neutral pH then decreased slightly at alkaline pH, whearas the intrinsic viscosity of agar increased as the pH of solution increased up to pH 9 then decreased slightly. Intrinsic viscosity of Gellan gum and agar decreased with an increase in salt concentration. The chain stiffness parameter for the Gellan gum was 0.033. The overlap parameter of Gellan gum and agar were 0.047g/dl and 0.087g/dl, respectively. Gellan gum and agar were shear rate dependent or pseudoplastic. The yield stress and proportionality constant of Gellan gum increased slightly as the concentration increase, on the other hand, the shear index of Gellan gum showed a maximum at 0.75g/dl and gradually decreased as the concentration increase. The apparent viscosity of Gellan gum and agar decreased as the temperature increase. A lower concentration of the divalent cations calcium and magnesium is required to obtain maximum gel strength than for the monovalent cations sodium and potassium.

  • PDF

Rheological Properties of Dandelion Root Concentrates by Extraction Solvents

  • Lee, Ok-Hwan;Kang, Suk-Nam;Lee, Boo-Yong
    • Food Science and Biotechnology
    • /
    • v.15 no.1
    • /
    • pp.33-38
    • /
    • 2006
  • This study was performed to provide basic rheological data of dandelion root concentrates in order to predict their processing aptitude and usefulness as functional foods material. The hot water and 70% ethanol extracts of dandelion root were concentrated at 5, 20, and 50 Brix, and their static viscosity, dynamic viscosity, and Arrhenius plots were investigated. Almost all hot water concentrates showed the typical flow properties of a pseudoplastic fluid, but evaluation using the power law model indicated that the 70% ethanol concentrates showed a flow behavior close to a Newtonian fluid. The apparent viscosity of hot water and 70% ethanol concentrates decreased with increasing temperature. Yield stresses of hot water and 70% ethanol concentrates by Herschel-Bulkley model application were in the range of 0.026 - 1.368 Pa and 0.022 - 0.238 Pa, respectively. The effect of temperature and concentration on the apparent viscosity was examined by Arrhenius equation. The activation energies of hot water and 70% ethanol concentrates were in the range of $8.762-23.778{\times}10^3\;J/mol{\cdot}kg$ and $3.217-20.384{\times}10^3\;J/mol{\cdot}kg$ with increasing concentration, respectively. Storage (G') and loss (G") moduli were generally increased with increasing frequency. For the 70% ethanol concentrates, G" predominated over G' at all applied frequencies and so they showed the typical flow behavior of a low molecular solution. However, for the hot water concentrates, G' predominated over G" at more than 1.9 rad/sec (cross-over point) and so they showed the typical flow behavior of a macromolecular solution.

Degradation of Alginate Solution by Using ${\gamma}-Irradiation$ and Organic Acid (감마선과 유기산을 이용한 알긴산 용액의 저분자화에 대한 연구)

  • Cho, Min;Kim, Byung-Yong;Rhim, Jong-Hwan
    • Korean Journal of Food Science and Technology
    • /
    • v.35 no.1
    • /
    • pp.67-71
    • /
    • 2003
  • Alginates were irradiated in an aqueous solution with $Co^{60}$ gamma rays in the dose ranges from 0 to 100 kGy, and investigated the relationship between the intrinsic viscosity $([{\eta}])$ and the molecular weight $(M_w)$ of alginates. The molecular weight of alginate was measured by gel permeation chromatography and the ranges from 1,894 to 135,174 Da were obtained. The molecular weight of alginate decreased markedly with increasing the degree of ${\gamma}-ray$ dose rate. The intrinsic viscosity of alginate solution after ${\gamma}-irradiation$ showed the ranges from 9.83 (g/g) to 602.69 (g/g), depending upon the ${\gamma}-irradiation$ dose. The molecular weight of alginate dependence of the intrinsic viscosity of the alginate solution would be expressed by Mark-Houwink equation. With a linearization of molecular weight and the intrinsic viscosity of the alginate solution, Mark-Houwink equation could be expressed with constant variables and the real data fitted to the equation of $[{\eta}]=2.2{\times}10^{-6}\;{M_w}^{1.656}\;(R^2=0.998)$.