• Title/Summary/Keyword: Solution growth method

Search Result 651, Processing Time 0.49 seconds

Understanding Growth mechanism of PEO coating using two-step oxidation process

  • Shin, Seong Hun;Rehman, Zeeshan Ur;Noh, Tae Hwan;Koo, Bon Heun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.173.2-173.2
    • /
    • 2016
  • A two-step oxidation method was applied on Al6061 to debate the growth mechanism of plasma electrolytic oxidation (PEO) coating. The specimens were first oxidized in the primary electrolyte solution {$Na_3PO_4$ (8g/l), NaOH (2g/l), consequently, the specimens were transferred into a different electrolyte {$K_2ZrF_6$ (8g/l), NaOH (2g/l), $Na_2SiF_6$ (0.5g/l)} for further oxidation. The processes was conducted for various processing times. It was found the second step electrolyte component were reached to inner layers, in contrast to the primary step components which were thrustle to the outer layer. The presence of the secondary component in the inner layers were significantly varied with processing time which suggest the change in growth properties with processing time. further more the inside growth of the secondary component confirmed the increasing trend in the downward growth of the coating layer. The corrosion and hardness properties of the coatings were found highly improved with change in growth features with increasing the processing time.

  • PDF

Polymer Films with Electrospray Deposition, model and experiment

  • Rietveld Ivo B.;Kobayashi Kei;Yamada Hirofumi;Matsushige Kazumi
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.284-284
    • /
    • 2006
  • Electrospray deposited films of poly(vinylidene fluoride) were prepared with various conditions. A model has been developed, which provides the state of the electrosprayed droplet at impact. With a combination of the experimental films and the model calculations, it can be shown that growth rate, the increase of the sprayed solution on the substrate per second, defines the film morphology in electrospray deposition. Growth rate indicates which factors play the main role in the film formation process. The most important factors are liquid flow, surface tension and shear rate. The model can calculate the shear rate and it is shown that PVDF, and most likely polymers in general, has a large range of growth rates, where the morphology only depends on the shear rate of the depositing droplet. This method can also be used to describe electrospray deposition of other compounds.

  • PDF

Optimization of inlet velocity profile for uniform epitaxial growth (균일한 에피층 성장을 위한 입구 유속분포 최적화)

  • Cho W. K.;Choi D. H.;Kim M.-U.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.11a
    • /
    • pp.121-126
    • /
    • 1998
  • A numerical optimization procedure is developed to find the inlet velocity profile that yields the most uniform epitaxial layer in a vertical MOCVD reactor. It involves the solution of fully elliptic equations of motion, temperature, and concentration; the finite volume method based on SIMPLE algorithm has been adopted to solve the Navier-Stokes equations. The overall optimization process is highly nonlinear and has been efficiently treated by the sequential linear programming technique that breaks the non-linear problem into a series of linear ones. The optimal profile approximated by a 6th-degree Chebyshev polynomial is very successful in reducing the spatial non-uniformity of the growth rate. The optimization is particularly effective to the high Reynolds number flow. It is also found that a properly constructed inlet velocity profile can suppress the buoyancy driven secondary flow and improve the growth-rate uniformity.

  • PDF

Enhancement of critical current density in $BaCeO_3$ doped $YBa_2Cu_3O_{7-\delta}$ thin Films deposited by TFA-MOD process (TFA-MOD공정에서 $BaCeO_3$ 첨가에 의한 $YBa_2Cu_3O_{7-\delta}$ 박막의 임계전류밀도 증가)

  • Lee, Jong-Beom;Kim, Byeong-Joo;Lee, Hee-Gyoun;Hong, Gye-Won
    • Progress in Superconductivity and Cryogenics
    • /
    • v.10 no.1
    • /
    • pp.1-5
    • /
    • 2008
  • The effect of $BaCeO_3$ doping on the critical current density of YBCO film by TFA-MOD method was studied. $BaCeO_3$ doping was made by two method; one is direct addition of $BaCeO_3$ nano-sized powder prepared by citrate process followed by grinding with planetary ball mill for 10 hours. Another is addition of Ba-Ce precursor solution prepared with Ba-acetate and Ce acetate dissolved in TFA to the YBCO-TFA precursor solution. The film was made by standard dip coating and heat treatment process with conversion temperature of $790^{\circ}C$ in 1000 ppm oxygen containing moisturized Ar gas atmosphere. The direct addition of $BaCeO_3$ powder resulted in YBCO film with good epitaxial growth and no evidence of second phase formation. The addition through precursor solution resulted in the increase of critical current density upto 30 at% doping and uniform dispersion of $BaCeO_3$ fine inclusion was confirmed by SEM-EDX.

Mode I crack propagation analisys using strain energy minimization and shape sensitivity

  • Beatriz Ferreira Souza;Gilberto Gomes
    • Structural Engineering and Mechanics
    • /
    • v.92 no.1
    • /
    • pp.99-110
    • /
    • 2024
  • The crack propagation path can be considered as a boundary problem in which the crack advances towards the interior of the domain. Consequently, this poses an optimization problem wherein the local crack-growth direction angle can be treated as a design variable. The advantage of this approach is that the continuous minimization of strain energy naturally leads to the mode I propagation path. Furthermore, this procedure does not rely on the precise characterization of the stress field at the crack tip and is independent of stress intensity factors. This paper proposes an algorithm based on internal point exploration as well as shape sensitivity optimization and strain energy minimization to determine the crack propagation direction. To implement this methodology, the algorithm utilizes a modeling GUI associated with an academic analysis program based on the Dual Boundary Elements Method and determines the propagation path by exploiting the elastic strain energy at points in the domain that are candidates to be included in the boundary. The sensitivity of the optimal solution is also assessed in the vicinity of the optimum point, ensuring the stability and robustness of the solution. The results obtained demonstrate that the proposed methodology accurately predicts the crack propagation direction in Mode I opening for a single crack (lateral and central). Furthermore, robust optimal solutions were achieved in all cases, indicating that the optimal solution was not highly sensitive to changes in the design variable in the vicinity of the optimal point.

Morphological changes of $BaCO_3$ microcrystal with the synthetic conditions (합성조건에 따른 $BaCO_3$ 마이크로 결정의 형태 변화)

  • Choi, Eun-Jee;Huh, Young-Duk
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.19 no.5
    • /
    • pp.223-227
    • /
    • 2009
  • $BaCO_3$ crystals with various morphology were prepared using precipitation, hydrothermal and ligand-assisted methods. An irregular structure of $BaCO_3$ microparticle was obtained by simple precipitation method from $Ba(NO_3)_2$ and $Na_2CO_3$ in aqueous solution. Hexagonal pyramidals of $BaCO_3$ were synthesized using a hydrothermal method between $Ba(NO_3)_2$ and urea. Hexagonal rods of $BaCO_3$ were also synthesized using the ligand-assisted hydrothermal method. The aspect ratio of $BaCO_3$ hexagonal rods was increased with the concentration of ligand.

Effect of Various Pretreatments and Drying Methods on the Quality of Dried Vegetables (각종 전처리 및 건조 방법이 건조 채소류의 품질에 미치는 영향)

  • Hwang, Keum-Taek;Rhim, Jong-Whan
    • Korean Journal of Food Science and Technology
    • /
    • v.26 no.6
    • /
    • pp.805-813
    • /
    • 1994
  • Zucchini slices, sweet potato stems, taro stems, and platycodon treated with various methods such as dipping in citric acid solution, sulfite solution, or sulfur fumigation were dried by the natural sun drying method or the forced air drying method at 50, 70, 90, or $105^{\circ}C$. Mold growth of the dried vegetables and sensory quality of the dried and rehydrated vegetables were investigated. Limiting moisture contents to prevent mold growth over 3 month storage under room temperature were 15, 20, 25, and 15% for zucchini slices, sweet potato stems, taro stems, and platycodon, respectively. The chlorophyll containing vegetables dehydrated by the forced hot air showed better sensory quality than those by the natural sun. Among the pretreatments, dipping in the sulfite solution provided the best sensory quality to the dried vegetables. The sensory quality of dried platycodon was improved to a small extent by sulfur fumigation and sulfite solution treatment. The sensory quality of the dried platycodon was not found to be affected by the drying methods. All the tested vegetables dried at $105^{\circ}C$ had the worst sensory quality. Except drying temperature of $105^{\circ}C$, the lower the drying temperature, the better the sensory quality and the rehydration rates were obtained for the tested vegetables except platycodon. The sensory quality of the platycodon was little affected by the drying temperature tested in the range of $50{\sim}90^{\circ}C$.

  • PDF

Mechanism of change in compressive strength of geopolymers by immersion method (침지방법에 따른 지오폴리머의 압축강도 변화 메커니즘)

  • Kim, Hakmin;Kim, Yootaek
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.32 no.2
    • /
    • pp.68-76
    • /
    • 2022
  • This study was performed to investigate the mechanism of the change in compressive strength of autoclave cured geopolymers. Specimens were immerged in distilled water, 2M, 8M, and 14M alkaline solutions for 3, 7, and 21 days. The change in the specimens immersed in a short period of time was not significant, but the compressive strength of the specimens immersed in the distilled water and 8M alkali solution) for 21 days increased more than twice as much as before immersion because of additional geopolymerization. However, compressive strength decreased due to the alkaline aggregate reaction when alkaline solution was supplied more than a certain level of concentration. Therefore, immersing the specimens for more than 21 days in the distilled water or 8M alkaline solution would be desirable for the improvement of compressive strength of autoclave cured specimens.

Growth of Axenic Rotifer Brachionus rotundiformis (무균 로티퍼 Brachionus rotundiformis의 증식)

  • Jung, Min-Min;Rho, Sum;Kim, Pil-Yun
    • Journal of Aquaculture
    • /
    • v.11 no.1
    • /
    • pp.91-97
    • /
    • 1998
  • This paper introduces to a simple culture method and growth of axenic (bacteria-free) rotifer Brachionus rotundiformis for seed stock of rotifer mass culture. This rotifer axenic culture method is based on the washing and transferring with sterilized sea water and modified antibiotic mixture AM9 solution. Population growth (final density on day 16) of axenic cultured rotifer were maintained with a high density and stable growth compared with the control of non-axenic culture (general culture style) through the 3 times-rerunning experiments (trial 1, 2 and 3). But the egg carrying rates of amictic females were not different between the axenic-and non-axenic culture condition. Although, rotifer density was higher in axenic culture, the food (Nannochloropsis oculata) was still remained unutilized than that of the non-axenic culture in third trial culture. These results suggest the possible existence of harmful bacteria for the rotifer population growth in the trial 1 and 3 of non-axenic culture compared to the trial 2. This axenic rotifer culture method is valuable for seed stock of the stable rotifer mass cultures.

  • PDF

Precise, Real-time Measurement of the Fresh Weight of Lettuce with Growth Stage in a Plant Factory using a Nutrient Film Technique (NFT 수경재배 방식의 식물공장에서 생육단계별 실시간 작물 생체중 정밀 측정 방법)

  • Kim, Ji-Soo;Kang, Woo Hyun;Ahn, Tae In;Shin, Jong Hwa;Son, Jung Eek
    • Horticultural Science & Technology
    • /
    • v.34 no.1
    • /
    • pp.77-83
    • /
    • 2016
  • The measurement of total fresh weight of plants provides an essential indicator of crop growth for monitoring production. To measure fresh weight without damaging the vegetation, image-based methods have been developed, but they have limitations. In addition, the total plant fresh weight is difficult to measure directly in hydroponic cultivation systems because of the amount of nutrient solution. This study aimed to develop a real-time, precise method to measure the total fresh weight of Romaine lettuce (Lactuca sativa L. cv. Asia Heuk Romaine) with growth stage in a plant factory using a nutrient film technique. The total weight of the channel, amount of residual nutrient solution in the channel, and fresh shoot and root weights of the plants were measured every 7 days after transplanting. The initial weight of the channel during nutrient solution supply (Wi) and its weight change per second just after the nutrient solution supply stopped were also measured. When no more draining occurred, the final weight of the channel (Ws) and the amount of residual nutrient solution in the channel were measured. The time constant (${\tau}$) was calculated by considering the transient values of Wi and Ws. The relationship of Wi, Ws, ${\tau}$, and fresh weight was quantitatively analyzed. After the nutrient solution supply stopped, the change in the channel weight exponentially decreased. The nutrient solution in the channel slowly drained as the root weight in the channel increased. Large differences were observed between the actual fresh weight of the plant and the predicted value because the channel included residual nutrient solution. These differences were difficult to predict with growth stage but a model with the time constant showed the highest accuracy. The real-time fresh weight could be calculated from Wi, Ws, and ${\tau}$ with growth stage.