• Title/Summary/Keyword: Solution Technique

Search Result 3,458, Processing Time 0.031 seconds

An Unstructured Mesh Technique for Rotor Aerodynamics

  • Kwon, Oh-Joon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.24-25
    • /
    • 2006
  • An unstructured mesh method has been developed for the simulation of steady and time-accurate flows around helicopter rotors. A dynamic and quasi-unsteady solution-adaptive mesh refinement technique was adopted for the enhancement of the solution accuracy in the local region of interest involving highly vortical flows. Applications were made to the 2-D blade-vortex interaction aerodynamics and the 3-D rotor blades in hover. The interaction between the rotor and the airframe in forward flight was investigated by introducing an overset mesh technique.

  • PDF

Characteristics of titanium polarization curve and formation of nanomesh by electrochemical method (전기화학적 방법에 의한 타이타늄 분극특성 및 나노메쉬 형성)

  • Park, Jin-Seo;Kim, Bu-Sub
    • Journal of Technologic Dentistry
    • /
    • v.38 no.2
    • /
    • pp.79-84
    • /
    • 2016
  • Purpose: The aim of this study was to make nanomesh on the surface of titanium by potentiostatic technique which was done at the suitable potential level. Methods: In order to find the suitable potential level, use a $25^{\circ}C$ NaCl, NaOH and NH4F solution of 1 M and 5 M as supporting electrolyte, working electrode(positive potential) was contact to the titanium specimen and counter electrode(negative potential) was contact to the Pt substrate. At the transpassive potential which was observed by potentiostatic technique, potentiostatic technique was done for 2hours. Results: As a result, 1 M NaOH solution was suitable as a supporting electrolyte, potentiostatic technique used a $25^{\circ}C$ NaOH solution of 1 M for 2hours, nanomesh was formed. Conclusion: The potentiostatic technique was used $25^{\circ}C$ NaOH solution of 1 M and 5 M as supporting electrolyte for 2hours. Nanomesh was built more uniform and fine in 1 M NaOH solution than 5 M NaOH solution.

J-integral calculation by domain integral technique using adaptive finite element method

  • Phongthanapanich, Sutthisak;Potjananapasiri, Kobsak;Dechaumphai, Pramote
    • Structural Engineering and Mechanics
    • /
    • v.28 no.4
    • /
    • pp.461-477
    • /
    • 2008
  • An adaptive finite element method for analyzing two-dimensional and axisymmetric nonlinear elastic fracture mechanics problems with cracks is presented. The J-integral is used as a parameter to characterize the severity of stresses and deformation near crack tips. The domain integral technique, for which all relevant quantities are integrated over any arbitrary element areas around the crack tips, is utilized as the J-integral solution scheme with 9-node degenerated crack tip elements. The solution accuracy is further improved by incorporating an error estimation procedure onto a remeshing algorithm with a solution mapping scheme to resume the analysis at a particular load level after the adaptive remeshing technique has been applied. Several benchmark problems are analyzed to evaluate the efficiency of the combined domain integral technique and the adaptive finite element method.

The effect of thermodynamic stability of casting solution on the membrane inversion process morphology and permeation properties in phase inversion process

  • Kim, Jeong-Hoon;Lee, Kew-Ho
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1995.04a
    • /
    • pp.26-27
    • /
    • 1995
  • Most of synthetic polymeric membranes used in ultrafiltration, reverse osmosis and microfiltration processes are prepared by phase inversion(or phase separation) technique. In this technique, a homogeneous polymer solution is cast into thin film or hollow fiber shape and then immersed into a nonsolvent coagulant bath. The exchange of solvent and nonsolvent across the interface between casting solution and coagu!ant can make the casting solution phase-separate and form a membrane with a symmetric or asymmetric structure. Because of importance of this technique in membrane field, many investigations have been dedicated to elucidate the mechanism of membrane formation by phase inversion technique.[1-10] These investigation have suggested that the structure formation and permeation properties of phase inversion membrane depend on the variables such as the nature and content of casting solution and coagulant, temperature of casting solution and coagulant, and the diffusional exchange rate of solvent and nonsolvent etc. which can be related to the thermodynamic and kinetic properties of the casting system. The variables such as the nature and content of casting solution can also be the important factor affecting the structure formation and permeation property of the phase inversion membrane.

  • PDF

Preconditioning technique for a simultaneous solution to wind-membrane interaction

  • Sun, Fang-jin;Gu, Ming
    • Wind and Structures
    • /
    • v.22 no.3
    • /
    • pp.349-368
    • /
    • 2016
  • A preconditioning technique is presented for a simultaneous solution to wind-membrane interaction. In the simultaneous equations, a linear elastic model was employed to deal with the fluid-structure data transfer at the interface. A Lagrange multiplier was introduced to impose the specified boundary conditions at the interface and strongly coupled simultaneous equations are derived after space and time discretization. An initial linear elastic model preconditioner and modified one were derived by treating the linearized elastic model equation as a saddle point problem, respectively. Accordingly, initial and modified fluid-structure interaction (FSI) preconditioner for the simultaneous equations were derived based on the initial and modified linear elastic model preconditioners, respectively. Wind-membrane interaction analysis by the proposed preconditioners, for two and three dimensional membranous structures respectively, was performed. Comparison was made between the performance of initial and modified preconditioners by comparing parameters such as iteration numbers, relative residuals and convergence in FSI computation. The results show that the proposed preconditioning technique greatly improves calculation accuracy and efficiency. The priority of the modified FSI preconditioner is verified. The proposed preconditioning technique provides an efficient solution procedure and paves the way for practical application of simultaneous solution for wind-structure interaction computation.

Preparation of Ultrafine $SnO_2$ Powders by Spray-ICP Technique

  • Kim, Jung-Hwan;Kim, Young-Do;Shin, Kun-Chul;Park, Jong-Hyun
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1998.06a
    • /
    • pp.65-70
    • /
    • 1998
  • The Spray-ICP technique uses the ICP(Inductively Coupled Plasma) of ultra-high temperature which is produced by r.f power. The ICP is well-kwown as a clean heat source for the preparation of pure ceramic particles because the ICP is a electrodeless-thermal plasma without contamination. In this study,{{{{ { SnO}_{2 } }}}} particles were sythesized from metal salt solution by Spray-ICP technique. The effects of concentration of solution, collecting location of powders were investicated. The prepared {{{{ { SnO}_{2 } }}}} particles from each concentration of solution had same crystalline phase(tetragonal {{{{ { SnO}_{2 } }}}}) a nd the mean size decreased in proportion to the increase of solution concentration. Each {{{{ { SnO}_{2 } }}}} p owders collector in reactor and electrostatic collector had same crystalline phase and morphologies. The mean size of {{{{ { SnO}_{2 } }}}} p articles prepared by Spray-ICP technique was below 30nm.

  • PDF

A Study on the Method of Load Distribution for Nonlinear Behaviour in RC-T Bridge (RC-T형교의 비선형거동해석을 위한 하중분배법에 관한 연구)

  • Im, Jung-Soon;Kim, Sung-SunChil;Park, Sung-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.2 no.1
    • /
    • pp.129-135
    • /
    • 1998
  • The characteristic of load-distribution is investigated by using nonlinear analysis with a field loading test of existing bridge In this study, nonlinear load-distribution technique for quantitative analysis was adopted. The results were compared with linear solution technique with data from failure test at existing RCT-girder bridge and examine the adequacy of the failure mode. The results of this study showed that the linear solution technique and the proposed nonlinear solution technique agreed well in linear region but did not matched well in nonlinear region because of load-redistribution, and that the effect of load-redistribution was considered to analysis of nonlinear region by linear solution.

  • PDF

A Yew Technique for Infrared Spectroscopy using Polyethylene Film Cell (Polyethylene Film을 利用한 赤外線分光分析用 Cell)

  • Sung, Chwa-Kyung;Noh, Ick-Sam
    • Journal of the Korean Chemical Society
    • /
    • v.7 no.1
    • /
    • pp.58-64
    • /
    • 1963
  • Authors propose a new technique using polyethylene film instead of sodium chloride window as a cell material. Nujol mulls, liquids and aqueous solutions are sandwitched between two pieces of polyethylene film which are held between cardboards. Ordinary lead or stainless steel spacers could be used if exact cell thickness is desired. A more elaborate cell can be assembled by injecting samples between two pieces of polyethylene film which are placed between sodium chloride windows of ordinary demountable liquid cell. The absorption bands due to polyethylene and Nujol are compensated by placing the polyethylene film of suitable thickness in the reference beam. The absorption bands due to solvents such as water can also be compensated by the polyethylene film cell sandwitched solvent of suitable thickness in the reference beam. This method would be a simple new technique. Especially this technique may offer a new helpful way for the investigation of the state of substances in aqueous system. Using this technique, authors have observed the appearance of an absorption bands at 3.2 micron, in the spectrum of phenol in aqueous solution, that is absent in the spectrum of phenol in benzene solution. The same absorption band also has been observed in the spectra of aqueous formaldehyde solution and aqueous polyvinyl alcohol solution, where the absorption bands due to polyethylene and water are compensated. Although it may be regarded that this absorption band is related to the intermolecular interaction between water and the solute having OH group, that is hydrogen bonding. The exact assignment of this absorption band is out of this work.

  • PDF

Effective technique to analyze transmission line conductors under high intensity winds

  • Aboshosha, Haitham;El Damatty, Ashraf
    • Wind and Structures
    • /
    • v.18 no.3
    • /
    • pp.235-252
    • /
    • 2014
  • An effective numerical technique to calculate the reactions of a multi-spanned transmission line conductor system, under arbitrary loads varying along the spans, is developed. Such variable loads are generated by High Intensity Wind (HIW) events in the form of tornadoes and downburst. First, a semi-closed form solution is derived to obtain the displacements and the reactions at the ends of each conductor span. The solution accounts for the nonlinearity of the system and the flexibility of the insulators. Second, a numerical scheme to solve the derived closed-form solution is proposed. Two conductor systems are analyzed under loads resulting from HIW events for validation of the proposed technique. Non-linear Finite Element Analyses (FEA) are also conducted for the same two systems. The responses resulting from the technique are shown to be in a very good agreement with those resulting from the FEA, which confirms the technique accuracy. Meanwhile, the semi-closed form technique shows superior efficiency in terms of the required computational time. The saving in computational time has a great advantage in predicting the response of the conductors under HIW events, since this requires a large number of analyses to cover different potential locations and sizes of those localized events.

CIGS Thin Film Fabrication Using Spray Deposition Technique (스프레이 분무법을 이용한 CIGS 태양전지 박막의 합성)

  • Cho, Jung-Min;Bae, Eun-Jin;Suh, Jeong-Dae;Song, Ki-Bong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.250-250
    • /
    • 2010
  • We have prepared CIGS thin film absorber layers with simple solution spray deposition technique and thin film were synthesized with different atomic ratio. CIGS thin films were synthesized using non-vacuum solution deposition method on pre-heated sodalime glass substrates and Mo-coated soadlime glass substrate. In precursor solution were Cu : In : Ga: S ratio 4 : 3 : 2 : 8 and the crystal type of sprayed thin film were CIGS chalcopyrite structures. This structure was identified as typical chalcopyrite tetragonal structure with XRD analysis. This result showed that CIGS solution deposition technique has potential for the one step synthesis and low cost fabrication process for CIS or CIGS thin film absorber layer.

  • PDF