• Title/Summary/Keyword: Soluble factor

Search Result 384, Processing Time 0.031 seconds

PREPARATION OF ASYMMETRIC POLYIMIDE MEMBRANTES BY THE PHASE INVERSION PROCESS

  • Nakane, Takashi;Yanagishita, Hiroshi
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1993.10a
    • /
    • pp.7-12
    • /
    • 1993
  • Preparation of asymmetric polyimide membranes by the phase inversion process was investigated to develop ultrafiltration, reverse osmosis and pervaporation membranes for organic solutions, using a commercially available solvent-soluble polymaide. The influences of the various factors such as the composition of a cast solution, casting conditions, gelating solutions and others on membrane structure and performance were studied in detail, and it was made clear that a wide variety of asymmetric polyimide membranes ranging from UF to RO for organic solutions could be prepared from the aromatic polyimide used. It was also found that the chemical stability and separation performance of the asymmetric polyimide membranes could be improved by annealing in a liquid or a vacuum at above 200$\circ$. The membrane annealed at 300$\circ$ in a vacuum exhibited the separation factor $\alpha(H_2O/EtOH)$ of 900 with the flux of 1.0 kg/$m^2\cdot h$ at 60$\circ$C for an aqueous ethanol solution of 95 vol%.

  • PDF

Physicochemical Factors for Evaluating Freshness of Apple and Tomato (사과 및 토마토의 신선도 평가를 위한 물리화학적 인자 탐색)

  • 조용진;황재관
    • Journal of Biosystems Engineering
    • /
    • v.23 no.5
    • /
    • pp.473-480
    • /
    • 1998
  • This study was performed to analyze the variation of various physicochemical factors related to the freshness of apple and tomato during post-harvest period. The total soluble solids content, uronic acid content, cell surface roughness. density, rupture deformation and rupture force were measured for 39 days at 7-day intervals for apple and for 11 days at 2-day intervals for tomato. respectively. The cell surface roughness of apple increased with the elapsed time, while the rupture force decreased. In case of tomato, uronic acid content, density and rupture deformation increased with the elapsed time whereas the rupture force decreased. Both apple and tomato exhibited the significant correlations among those physicochemical factors.

  • PDF

Behaviors of Inorganic Components in Atmospheric Aerosols on the Yellow Sand Phenomena (황사현상시 대기에어로졸 중 무기물질의 동태)

  • 이민희;한의정;신찬기;한진석;김상균
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.9 no.3
    • /
    • pp.230-235
    • /
    • 1993
  • The atmospheric aerosol samples during the Yellow Sand Phenomena in April 1993 were analyzed, and they were compared with those during the normal time. The conclusions are as follows: 1) TSP concentrations in the case of Yellow Sand Phenomena appeared to be 2.2times higher than those of normal conditions. 2) The concentration of aerosols; Inorganic components of soil-originated elements (Ca, Fe, Mn, Mg, K) during the Yellow Sand Phenomena were measured to be 1.9-2.1times higher than those during normal time. 3) During the Yellow Sand Phenomena the EF values of soil-originated metal contents except for elements Cd, Ni, Pb, Zn in the atmospheric aerosol were close to unity. 4) The concentrations of $Ca^{2+}, SO_4^{2-}, F^-$ in water soluble ionic components were higher than those during the normal time. 5) Washout factor by rain fall during the Yellow Sand Phenomena were estimated to 1268. 6) During the Yellow Sand Phenomina average deposition was 37.8ton/$km^2$.

  • PDF

대장균내에서 발현된 돼지 TGF-$\beta$1의 분리 및 면역학적 항원성 보유검증

  • Choi, Eun Young;;Kim, Pyung Hyun;Byeon, Woo-Hyeon
    • Microbiology and Biotechnology Letters
    • /
    • v.25 no.2
    • /
    • pp.137-143
    • /
    • 1997
  • Porcine transforming growth factor-$\beta$1 (TGF-$\beta$1) was expressed in Escherichia coli using cDNA of TGF-$\beta$1 and glutathione S-transferase (GST) fusion vector pGEX-1$\lambda$T. An ApoI-Tth111I fragment of cDNA which correspond to the amino acid residues from 123 to 390 of the precursor TGF-$\beta$1 was inserted into EcoRI-Tth111I digested pGEM#-l$\lambda$T and the recombined plasmid was named pGET-12. Gene products from the cloned regions of the recombinant plasmids pGET-12 was not detected in soluble fraction of cell free extract but detected in insoluble fraction. The solubilization of insoluble gene product was achieved by the treatment of N-laurylsarcosine. Molecular weight of partially purified proteins determined by electrophoresis was same as expected from cloned fragment. The ELISA test results of the purified proteins showed that immunologically detectable epitope was preserved in recombinant protein.

  • PDF

Production of Phagocyte Activating Supernatants by Olive Flounder (Paralichthys olivaceus) Leucocytes Stimulated with Genomic DNA of Escherichia coli

  • Lee Chan Hwei;Kim Dong Soo;Kim Ki Hong
    • Fisheries and Aquatic Sciences
    • /
    • v.5 no.4
    • /
    • pp.258-262
    • /
    • 2002
  • Effects of Escherichia coli genomic DNA on the production of phagocyte activating supernatants by the head kidney leucocytes isolated from olive flounder (Paralichthys olivaceus) were investigated. Phagocyte activating activity of the supernatants was estimated by. measuring reactive oxygen species (ROS) production in target head kidney phagocytes. All supernatants from olive flounder head kidney leucocytes-stimulated with E. coli DNA induced significantly (P<0.01) higher ROS production from target pagocytes than the unstimulated control supernatant. Maximum enhancement of chemiluminescent response was observed $5.0-10.0{\mu}g\;mL^{-1}$ of bacterial DNA while the increment ability was decreased significantly (P<0.01) at the concentration of $20.0{\mu}mL^{-1}$. The results demonstrate that olive flounder head-kidney leucocytes stimulated with bacterial DNA release a soluble phagocyte activating cytokines capable of enhancing the respiratory burst activity from target phagocytes.

Production of Active Carboxypeptidase Y of Saccharomyces cerevisiae Secreted from Methylotrophic Yeast Pichia pastoris

  • RO, HYEON-SU;LEE, MI-SUN;HAHM, MOON-SUN;BAE, HEE-SUNG;CHUNG, BONG HYUN
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.1
    • /
    • pp.202-205
    • /
    • 2005
  • Our previous study showed that the overexpression of carboxypeptidase Y (CPY) of Saccharomyces cerevisiae in Escherichia coli resulted in the formation of insoluble inclusion bodies. To produce soluble CPY, we designed a novel Pichia pastoris expression system, in which the following were inserted into expression vectors: three different signal sequences derived from the mating factor a1 of S. cerevisiae, an inulinase of Kluyveromyces marxianus, and the endogenous signal sequence of CPY. The expression vector pHIL-D2-SSinul-proCPY was the most effective in the production of proCPY among the vectors examined. The purified active CPY was obtained from proCPY by treating with proteinase K, followed by QExcellose ion-exchange column chromatography.

Complement regulation: physiology and disease relevance

  • Cho, Heeyeon
    • Clinical and Experimental Pediatrics
    • /
    • v.58 no.7
    • /
    • pp.239-244
    • /
    • 2015
  • The complement system is part of the innate immune response and as such defends against invading pathogens, removes immune complexes and damaged self-cells, aids organ regeneration, confers neuroprotection, and engages with the adaptive immune response via T and B cells. Complement activation can either benefit or harm the host organism; thus, the complement system must maintain a balance between activation on foreign or modified self surfaces and inhibition on intact host cells. Complement regulators are essential for maintaining this balance and are classified as soluble regulators, such as factor H, and membrane-bound regulators. Defective complement regulators can damage the host cell and result in the accumulation of immunological debris. Moreover, defective regulators are associated with several autoimmune diseases such as atypical hemolytic uremic syndrome, dense deposit disease, age-related macular degeneration, and systemic lupus erythematosus. Therefore, understanding the molecular mechanisms by which the complement system is regulated is important for the development of novel therapies for complement-associated diseases.

Nursing Effects of Thiols Including Cysteine in Lymph Node Stromal Cells and P388 Cells

  • Lee, Sang-Han;Ma, Jin-Yeul;Park, Kap-Joo;Kang, Hyunmin;Park, Taekyu;Park, Doo-Sang
    • Journal of Life Science
    • /
    • v.11 no.2
    • /
    • pp.99-102
    • /
    • 2001
  • Mouse malignant T-lymphoma CS21 cells can grow when cocultured with CAl2 lymph node stromal cells, but they undergo apoptotic cell death with DNA fragmentation when separated from CA12 stromal cells. In the course of examining the effects of the soluble factor (s) secreted by CAl2 stromal cells on CS2l cell growth, we found that thiols including cysteine promoted CS2l cell growth. P388 cell growth was also promoted by various thiols. These results suggest that thiols including cysteine participate in CA12 and P388 cell growth.

  • PDF

SNAREs in Plant Biotic and Abiotic Stress Responses

  • Kwon, Chian;Lee, Jae-Hoon;Yun, Hye Sup
    • Molecules and Cells
    • /
    • v.43 no.6
    • /
    • pp.501-508
    • /
    • 2020
  • In eukaryotes, membraneous cellular compartmentation essentially requires vesicle trafficking for communications among distinct organelles. A donor organelle-generated vesicle releases its cargo into a target compartment by fusing two distinct vesicle and target membranes. Vesicle fusion, the final step of vesicle trafficking, is driven intrinsically by complex formation of soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs). Although SNAREs are well-conserved across eukaryotes, genomic studies revealed that plants have dramatically increased the number of SNARE genes than other eukaryotes. This increase is attributed to the sessile nature of plants, likely for more sensitive and harmonized responses to environmental stresses. In this review, we therefore try to summarize and discuss the current understanding of plant SNAREs function in responses to biotic and abiotic stresses.

Rolipram, a Phosphodiesterase 4 Inhibitor, Stimulates Osteoclast Formation by Inducing TRANCE Expression in Mouse Calvarial Cells

  • Cho, Eun-Sook;Yu, Ja-Heon;Kim, Mi-Sun;Yim, Mi-Jung
    • Archives of Pharmacal Research
    • /
    • v.27 no.12
    • /
    • pp.1258-1262
    • /
    • 2004
  • Phosphodiesterase (PDE) 4 is an enzyme that degrades intracellular cAMP. In the present study, the effect of rolipram, a specific phosphodiesterase (PDE) 4 inhibitor, on osteoclast formation was investigated. Rolipram induced osteoclast formation in cocultures of mouse bone marrow cells and calvarial osteoblasts. This activity was not observed in the absence of calvarial osteoblasts, suggesting that calvarial osteoblasts are likely target cells of rolipram. Osteoclast formation by rolipram was completely blocked by the addition of osteoprotegerin (OPG), a soluble decoy receptor for the osteoclast differentiation factor, TNF-related activation-induced cytokine (TRANCE, identical to RANKL, ODF, and OPGL). Northern blot analysis revealed the effect of rolipram to be associated with the increased expression of TRANCE mRNA in mouse calvarial osteoblasts. Collectively, these data indicate that PDE4 inhibitor up-regulates the TRANCE mRNA expression in osteoblasts, which in turn controls osteoclast formation.