• Title/Summary/Keyword: Solubility limit

Search Result 100, Processing Time 0.035 seconds

Electrical Properties of Al3+ and Y3+ Co-doped SnO2 Transparent Conducting Films (Al3+와 Y3+ 동시치환 SnO2 투명전극 박막의 전기적 특성)

  • Kim, Geun-Woo;Seo, Yong-Jun;Sung, Chang-Hoon;Park, Keun-Young;Cho, Ho-Je;Heo, Si-Nae;Koo, Bon-Heun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.10
    • /
    • pp.805-810
    • /
    • 2012
  • Transparent conducting oxides (TCOs) have wide range of application areas in transparent electrode for display devices, Transparent coating for solar energy heat mirrors, and electromagnetic wave shield. $SnO_2$ is intrinsically an n-type semiconductor due to oxygen deficiencies and has a high energy-band gap more than 3.5 eV. It is known as a transparent conducting oxide because of its low resistivity of $10^{-3}{\Omega}{\cdot}cm$ and high transmittance over 90% in visible region. In this study, co-doping effects of Al and Y on the properties of $SnO_2$ were investigated. The addition of Y in $SnO_2$ was tried to create oxygen vacancies that increase the diffusivity of oxygen ions for the densification of $SnO_2$. The addition of Al was expected to increase the electron concentration. Once, we observed solubility limit of $SnO_2$ single-doped with Al and Y. $\{(x/2)Al_2O_3+(x/2)Y_2O_3\}-SnO_2$ was used for the source of Al and Y to prevent the evaporation of $Al_2O_3$ and for the charge compensation. And we observed the valence changes of aluminium oxide because generally reported of valence changes of aluminium oxide in Tin - Aluminium binary system. The electrical properties, solubility limit, densification and microstructure of $SnO_2$ co-doped with Al and Y will be discussed.

Development of New Materials of Ginseng by Nanoparticles

  • Yang, Deok Chun;Mathiyalagan, Ramya;Yang, Dong Uk;Perez, Zuly Elizabeth Jimenez;Hurh, Joon;Ahn, Jong Chan
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2018.04a
    • /
    • pp.3-3
    • /
    • 2018
  • For centuries, Panax ginseng Meyer (Korean ginseng) has been widely used as a medicinal herb in Korea, China, and Japan. Ginsenosides are a class of triterpene saponins and recognized as the bioactive components in Korean ginseng. Ginsenosides, which can be classified broadly as protopanaxadiols (PPD), protopanaxatriols (PPT), and oleanolic acids, have been shown to flaunt a vast array of pharmacological activities such as immune-modulatory, anti-inflammatory, anti-tumor, anti-diabetic, and antioxidant effects. In recent years, a number of ginseng and ginsenoside researches have increasingly gained wide attention owing to its unique pharmacological properties. Although good efficacies of ginsenosides have been reported, lack of target specific delivery into tumor sites, low solubility, and low bioavailability due to modifications in gastro-intestinal environments limit their biomedical application in clinical trials. As a result to this major challenge, nanotechnology and drug delivery techniques play a significant role to solve this problematic issue. Thus, we reported the preparation of poly-ethylene glycol (PEG) and glycol chitosan (GC) functionalized to ginsenoside (Compound K and PPD) conjugates via hydrolysable ester bonds with improved aqueous solubility and pH-dependent drug release. In vitro cytotoxicity assays revealed that PEG-CK, and PPD-CK conjugates exhibited lower cytotoxicity compared to bare CK and PPD in HT29 cells. However, GC-CK conjugates exhibited higher and similar cytotoxicity in HT29 and HepG2 cells. Furthermore, GC-CK-treated RAW264.7 cells did not exhibit significant cell death at higher concentration of treatment which supports the biocompatibility of the polymer conjugates. They also inhibited nitric oxide production in lipopolysaccharide (LPS)-induced RAW64.7 cells. In addition to polymer-ginsenoside conjugates, silver (AgNps) and gold nanoparticles (AuNps) have been successfully synthesized by green chemistry using different m. The biosynthesized nanoparticles demonstrated antimicrobial efficacy, anticancer, anti-inflammatory, antioxidant activity, biofilm inhibition, and anticoagulant effect. Special interest on the effective delivery methods of ginsenoside to treatment sites is the focus of metal nanoparticle research.In short, nano-sizing of ginsenoside results in an increased water solubility and bioavailability. The use of nano-sized ginsenoside and P. ginseng mediated metallic nanoparticles is expected to be effective on medical platform against various diseases in the future.

  • PDF

N-oleoyl-D-erythro-sphingosine-based Analysis of Ceramide by High Performance Liquid Chromatography and Its Application to Determination in Diverse Biological Samples

  • Lee, Youn-Sun;Choi, Heon-Kyo;Yoo, Jae-Myung;Choi, Kyong-Mi;Lee, Yong-Moon;Oh, Sei-Kwan;Kim, Tack-Joong;Yun, Yeo-Pyo;Hong, Jin-Tae;Okino, Nozomu;Ito, Makoto;Yoo, Hwan-Soo
    • Molecular & Cellular Toxicology
    • /
    • v.3 no.4
    • /
    • pp.273-281
    • /
    • 2007
  • Ceramide is involved in cell death as a lipid mediator of stress responses. In this study, we developed an improved method of ceramide quantification based on added synthetic ceramide and thin layer chromatography (TLC) separation, and applied to biological samples. Lipids were extracted from samples spiked with N-oleoyl-D-erythro-sphingosine ($C_{17}$ ceramide) as an internal standard. Ceramide was resolved by TLC, complexed with fatty-acidfree bovine serum albumin (BSA), and deacylated by ceramidase (CDase). The released sphingosine was derivatized with o-phthalaldehyde (OPA) and measured by high performance liquid chromatography (HPLC). The limit of detection for ceramide was about 1-2 pmol and the lower limit of quantification was 5 pmol. Ceramide recovery was approximately 86-93%. Ceramide concentrations were determined in biological samples including cultured cells, mouse tissues, and mouse and human plasma. TLC separation of ceramide provides HPLC chromatogram with a clean background without any interfering peaks and the enhanced solubility of ceramide by BSAceramide complex leads to the increased deacylation of ceramide. The use of an internal standard for the determination of ceramide concentration in these samples provides an accurate and reproducible analytical method, and this method can be applicable to diverse biological samples.

Detemination of Short-term Bioconcentration Factor on Dichlorvos, Methidathion and Phosalone in Brachydanio rerio and Xiphophorus hellieri (Brachydanio rerio와 Xiphophorus hellieri를 이용한 Dichlorvos, Methidathion 및 Phosalone의 단기간 생물농축계수의 측정)

  • 민경진;전봉식;차춘근;김근배;조영주
    • Journal of Environmental Health Sciences
    • /
    • v.24 no.3
    • /
    • pp.99-106
    • /
    • 1998
  • This study was performed to investigate the bioconcentration of dichlorvos, methidathion and phosalone in zebrafish (brachydanio rerio), red sword tail(Xiphophorus hellieri). The fishes were exposed to 0.05 ppm, 0.01 ppm, 0.50 ppm, one-hundredth concentration of 96-hrs LC$_{50}$ and one-thousandth concentration of 96-hrs LC$_{50}$ and test periods were 3, 5 and 8 days. The deputation rate of each pesticide from the whole body of fish was determined over the 24-hr period after treatment. Obtained results are summerized as follows: In the case of dichlorvos, dichlorvos concentration in zebrafish extract and BCF$_{s}$ of dichlorvos were increased as increasing test concentration. In the case of same experimental concentrations, dichlorvos concentration in zebrafish extract and BCF$_{s}$ of dichlorvos were decreased as proloning test periods, especially dropped after 5days. Dichlorvos concentration in red sword tail extract were increased as increasing test concentration, lyat BCF$_{s}$ in concentration of 0.05 ppm, 0.01 ppm and one-hundredth of 96-hrs LC$_{50}$ were decreased. Methidathion and phosalone concentration in zebrafish extract in zebrafish extract were increased as increasing test concentration, but there was little difference in BCF$_{s}$. In the case of same experimental concentrations, there were little differences in BCF$_{s}$ and concentration in zebrafish extract. In the case of red sword tail, it was impossible to calculate on BCF$_{s}$ data because test concentration was under the detecting limit on GC or test fish were die. Determined deputation rate conatant were highest on dichlorvos, and followed by methidathion, and phosalone. The results of determining depuration rate of these pesticides showed that the high BCF in fish might be due to the slow depuration rate in fish, it is thought to be responsible for vapor pressure, water solubility and partition coefficient. It is suggested that one-hundredth concentration of 96-hrs LC$_{50}$ will be proper test concentration because one-thousundth of LC$_{50}$ was under the detecting limit on GC. Dichlorvos, methidathion and phosalone, organophosphorous pesticides, were examined to their BCF$_{s}$ and depuration rates by means of fish test.

  • PDF

Structural Stability During Charge-Discharge Cycles in Zr-doped LiCoO2 Powders (충방전 과정중 구조가 안정한 Zr이 도핑된 LiCoO2 분말)

  • Kim, Seon-Hye;Shim, Kwang-Bo;Ahn, Jae-Pyoung;Kim, Chang-Sam
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.3
    • /
    • pp.167-171
    • /
    • 2008
  • Zirconium-doped $Li_{1.1}Co_{1-x}Zr_xO_2(0{\leq}x{\leq}0.05)$ powders as cathode materials for lithium ion batteries were synthesized using an ultrasonic spray pyrolysis method. Cyclic voltammetry and cyclic stability tests were performed, and the changes of microstructure were observed. The solubility limit of zirconium into $Li_{1.1}CoO_2$ was less than 5 mol%, and monoclinic $Li_2ZrO_3$ phase was formed above the limit. The Zr-doping suppressed the grain growth and increased the lattice parameters of the hexagonal $LiCoO_2$ phase. The Zr-dopiong of 1mol% resulted in the best cyclic performance in the range of $3.0{\sim}4.3V$ at 1C rate (140 mA/g); the initial discharge capacity decreased from 158 mAh/g to 60 mAh/g in the undoped powder, while from 154 mAh/g to 135 mAh/g in the Zr-doped powder of 1 mol% after 30 cycles. The excellent cycle stability of Zr-doped powder was due to the low polarization during chargedischarge processes which resulted from the delayed collapse of the crystal structure of the active materials with Zr-doping.

Structural, Electrical and Magnetic Properties of Wide Bandgap Diluted Magnetic Semiconductor CuAl1-xMnxO2 Ceramics (널은 띠간격 묽은 자성반도체 CuAl1-xMnxO2 세라믹스의 구조 및 전자기 특성)

  • Ji Sung Hwa;Kim Hyojin
    • Korean Journal of Materials Research
    • /
    • v.14 no.8
    • /
    • pp.595-599
    • /
    • 2004
  • We investigated the structural, electrical and magnetic properties of Mn-doped $CuAlO_2$ delafossite ceramics ($CuAl_{1-x}Mn_{x}O_2,\;0\le\;x\;\le0.05$), synthesized by solid-state reaction method in an air atmosphere at a sintering temperature of $1150^{\circ}C$. The solubility limit of Mn ions in delafossite $CuAlO_2$ was found to be as low as about 3 $mol\%$. Positive Hall coefficient and the temperature dependence of conductivity established that non-doped $CuAlO_2$ ceramic is a variable-range hopping p-type semiconductor. It was found that the Mn-doping in $CuAlO_2$ rapidly reduced the hole concentration and conductivity, indicating compensation of free holes. The analysis of the magnetization data provided an evidence that antiferromagnetic superexchange interaction is the dominant mechanism of the exchange coupling between Mn ions in $CuAl_{1-x}Mn_{x}O$ alloy, leading to an almost paramagnetic behavior in this alloy.

A Study on Heat and Mass Transfer Characteristics of LiBr-$H_2$O Solution with a Sufactant Flowing over a Cooled Horizontal Tube (계면활성제 첨가시 수평 냉각관 외부를 흘러내리는 LiBr수용액의 열 및 물질전달 특성에 관한 연구)

  • 김경희;설신수;이상용
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.4
    • /
    • pp.341-349
    • /
    • 2002
  • Heat and mass transfer characteristics of a surfactant-added LiBr-$H_2O$ solution flowing over a single horizontal tube were examined experimentally. The parameters considered were surfactant (2-ethyl-1-hexanol) concentration, solution temperature at the top of the tube and absorber pressure. Even with an amount of the surfactant below the solubility limit, heat and mass transfer performances were enhanced tremendously. The Nusselt and Sherwood numbers increased by about 70% and 340%, respectively, when 10 ppm of the surfactant was added. However, an excess amount of the surfactant in the solution did not bring a further enhancement. The absorption performance deteriorated when the non-condensable gases were extracted from the system (by a vacuum pump) since the vaporized surfactant was also extracted during the process. Therefore, it is desirable to add a sufficient amount of the surfactant (more than 10 ppm) to maintain high performance of absorption.

Decolorization of Porcine Red Blood Cell Globin With Ion Exchanger Method and Modification of Its Protein Functionalities

  • Yang, Jeng-Huh;Lin, Chin-Wen
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.12
    • /
    • pp.1770-1774
    • /
    • 2000
  • Extended use of porcine blood in food ingredients depends on the decolorization of red blood cell concentrates and the modification of its functional properties. The purpose of this study is to compare the relative effect of cation ion exchanger for decolorization of porcine red blood globin. The globin extract is freeze-dried for determination of various functional properties, such as solubility, emulsion capability and foaming ability. Since the isoelectric point of blood globin is located at pH 6.8, which is the neutral pH ranges (6-8), so its functionalities are inferior around these pHs. This weakness has been the main reason, which limit the extended use of blood globin in food industry. Acetylation and succinylation of blood globin can be an alternative way to improve its functionalities. These results may provide new information to understand the decolorization mode by cation ion exchanger for the blood globin. With chemical, the functionalities of blood globin could be obviously improved. The above findings could enable food industry to extend the use of blood globin as a food ingredient.

Effects of $MnO_2$ on the Dielectric and Piezoelectric Properties of Pb($Zr_{0.52}$ $Ti_{0.48}$)$O_3$ Ceramics (Pb($Zr_{0.52}$ $Ti_{0.48}$)$O_3$세라믹스의 유전 및 압전성에 미치는 $MnO_2$ 의 영향)

  • 김종선;윤기현;최병현;박종옥;이종민
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.2
    • /
    • pp.187-194
    • /
    • 1990
  • Effects of MnO2 addition ranged from 0.0wt% to 5.0wt% on the microstructure and dielectric and piezoelectric properties of the Pb(Zr0.52 Ti0.48)O3 Ceramics have been investigated. The solubility limit of MnO2 in Pb(Zr0.52 Ti0.48)O3 is about 0.5wt%, and MnO2 as a valence state of Mn3+ is substituted for (Zr, Ti) lattice site in PZT solid-solution. The addition of MnO2 up to 0.5wt% in Pb(Zr0.52 Ti0.48)O3 brings increase of density, but decreased of grain size and tetragonality. Dielectric constant slightly decreases, but both coupling factor(Kp) and mechanical quality factor(Qm) increase with the addition of MnO2. However, excess amount of MnO2 addition more than 0.75wt% results in rapid decrease of resistance. Dielectric constant and tan $\delta$ increase due to the second phase and inhomogeneous Mn distribution.

  • PDF

STUDIES ON THE POLY(4,4-TEREPHTHANILIDEALKYLAMIDE)S (II) Rheological properties and Fibre Performance

  • Seung Sang Hwang;Byo
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 1987.06b
    • /
    • pp.11-11
    • /
    • 1987
  • Among other poly(4,4'-terephthanilidealkylamide)s (PTAA's), poly (4,4'-terephthanilideadipamide) (PTAd) gave clear critical concentration curves. For PTAA's with methylene units more than 6, the critical concentration (C*) seemed to be beyond the solubility limit of H₂SO₄. Under shearing conditions, the nematic domains were easily oriented and stretched in the direction of shear , and a fibrillar structure resulted. At low frequencies, a monotollous reduction of loss tangent (tan) was observed as concentration increased. At high frequencies, however, tan was increased above C* again, and showed maximum at saturation concentration (Cs). With increasing temperature, viscosity of isotropic and anisotropic phases was normally decreased, while viscosity of biphases was increased. Plot of complex viscosity (If) against temperature based on rheological measurements exhibited a good correlation with phase diagram constructed by polarizing microscope observations. Rheological parameters suggested the optimum dope concentration of PTAd with inherent viscosity 2.02 at 30oc is in the vicinity of 19.2 wt%, which seemed to agree well with spinning experiments (around 19.4 wt%). In general, effects of spinning and annealing conditions on the mechanical properties of PTAA fibres were most pronounced in PTAd fibre spun from anisotropic spinning dope .

  • PDF