• Title/Summary/Keyword: Solidification shell

Search Result 29, Processing Time 0.021 seconds

SEINA: A two-dimensional steam explosion integrated analysis code

  • Wu, Liangpeng;Sun, Ruiyu;Chen, Ronghua;Tian, Wenxi;Qiu, Suizheng;Su, G.H.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.10
    • /
    • pp.3909-3918
    • /
    • 2022
  • In the event of a severe accident, the reactor core may melt due to insufficient cooling. the high-temperature core melt will have a strong interaction (FCI) with the coolant, which may lead to steam explosion. Steam explosion would pose a serious threat to the safety of the reactors. Therefore, the study of steam explosion is of great significance to the assessment of severe accidents in nuclear reactors. This research focuses on the development of a two-dimensional steam explosion integrated analysis code called SEINA. Based on the semi-implicit Euler scheme, the three-phase field was considered in this code. Besides, the influence of evaporation drag of melt and the influence of solidified shell during the process of melt droplet fragmentation were also considered. The code was simulated and validated by FARO L-14 and KROTOS KS-2 experiments. The calculation results of SEINA code are in good agreement with the experimental results, and the results show that if the effects of evaporation drag and melt solidification shell are considered, the FCI process can be described more accurately. Therefore, it is proved that SEINA has the potential to be a powerful and effective tool for the analysis of steam explosions in nuclear reactors.

A Study on the Effect of Inclusions on the Fatigue Life of Titanium Investment Castings (티타늄 정밀주조품의 피로수명에 미치는 개재물의 영향에 관한 연구)

  • Park, Yong-Kuk;Ret, P.L.;Kim, Jin-Gon
    • Journal of Korea Foundry Society
    • /
    • v.26 no.2
    • /
    • pp.85-91
    • /
    • 2006
  • Inclusions in Ti investment castings are generally known to have detrimental effects on the performance of the castings. However, actual inclusions are infrequent and hard to be located. As a result, it is extremely difficult to obtain sufficient amount of fatigue test specimens of titanium investment castings having inclusions in the gage section. Thus, in-depth research of the adverse influence of inclusions is also hindered. To address this problem, a new casting methodology of specimens containing hard alpha inclusions was developed in this study. To guarantee successful introduction of an inclusion and casting, a carefully designed mold with 8 legs and a special tool were employed. After solidification, castings were cut, and X-ray radiography determined that the inclusions were successfully incorporated into the castings. The castings were further prepared to obtain multiple test specimens and they were fatigue-tested consecutively. Fractography analysis confirmed that fatigue cracks initiated at the hard alpha inclusion. In a nonlinear regression model, the fatigue life can be modeled as an exponential function with a negative exponent of the cross-sectional area of an inclusion. The fatigue life of Ti specimens containing inclusions is inversely proportional to the cross-sectional area of an inclusion.

A Study on the Fabrication of Cast Iron-Babbitt Metal Composite Pipes by Centrifugal Casting Process (원심주조법에 의한 주철-Babbitt Metal 복합관 제조에 관한 연구)

  • Lee, Chung-Do;Kang, Choon-Sik
    • Journal of Korea Foundry Society
    • /
    • v.13 no.1
    • /
    • pp.42-49
    • /
    • 1993
  • Conventional manufacturing process for cast iron-babbitt metal composite is complicate and bimetallic bonding by centrifugal casting is also difficult because their melting point is largely different and nonmetallic inclusion exists on outer shell. This study is aiming to simplify multistage process by adding Cu-powder as insert metals during cast iron solidification. The variables on fabrication of composite pipe are mold rotating speed and inner surface temperature of outer metal. The optimum temperature range for fusion bonding between cast iron and Cu-layer was $1100^{\circ}C-1140^{\circ}C$ in case of mold rotating speed was 700rpm. When the inner surface of Cu-layer was at $900^{\circ}C$, the value of interfacial hardness between Cu-layer and babbitt metal were higher than Cu-matrix by forming diffusion layer, interfacial products between Cu-layer and babbitt metal are proved to be $Cu_6Sn_5({\eta})$by XRD.

  • PDF

Study on the effect of silicon content on matrix of hypo-eutectic Cr alloyed cast iron (아공정(亞共晶)Cr 주철(鑄鐵)의 기지조직(基地組織)에 미치는 Si의 영향(影響))

  • Kim, Sug-Won;Lee, Oh-Yeon;Kim, Dong-Keon
    • Journal of Korea Foundry Society
    • /
    • v.4 no.2
    • /
    • pp.96-101
    • /
    • 1984
  • The morphologies of eutectic cell formed during solidification affect on the mechanical properties in high Cr cast iron. In order to investigate the influence of Si on the structure, five kinds of specimen containing 16.42% Cr with varying amount of Si (0.51%, 1.17%, 2.22%, 2.71%, 3.56%) were poured into shell mould preheated $330^{\circ}C$ at $1510^{\circ}C$. The effect of Si on matrix in hypo-eutctic Cr cast iron (2.48% C, 16.42%) were studied through its mechanical tests and observation of microstructure using of metallurgical microscope, EPMA, SEM and Image analyzer systematically. The results obtained from the above studies are as follows: 1. Because of ${\Delta}T$ decreasing with increasing Si content, the morpologies of colony change into uniform bar-type carbide from plate-type ones, moreover eutectic colony size (Ew) becomes narrow and spacing of carbide wider. 2. As Si content increases, the amount of carbides also increases and most of Cr were dissolved in carbides while Si in matrix. 3. The hardness, tensile strength and wear resistance were increasing while impact value decreased with increasing Si content. 4. In fracture section, small amount of dimple pattern was observed in less than 1.17% Si but more than 2.22% Si river pattern was presented.

  • PDF

Formation of Poly(ethylene glycol)-Poly($\varepsilon$-caprolactone) Nanoparticles via Nanoprecipitation

  • Lee, Jae-Sung;Hwang, Su-Jong;Lee, Doo-Sung;Kim, Sung-Chul;Kim, Duk-Joon
    • Macromolecular Research
    • /
    • v.17 no.2
    • /
    • pp.72-78
    • /
    • 2009
  • Size control of therapeutic carriers in drug delivery systems has become important due to its relevance to biodistribution in the human body and therapeutic efficacy. To understand the dependence of particle size on the formation condition during nanoprecipitation method, we prepared nanoparticles from biodegradable, amphiphilic block copolymers and investigated the particle size and structure of the resultant nanoparticles according to various process parameters. We synthesized monomethoxy poly(ethylene glycol)-poly($\varepsilon$-caprolactone) block copolymer, MPEG-PCL, with different MPEG/PCL ratios via ring opening polymerization initiated from the hydroxyl end group of MPEG. Using various formulations with systematic change of the block ratio of MPEG and PCL, solvent choice, and concentration of organic phase, MPEG-PCL nanoparticles were prepared through nanoprecipitation technique. The results indicated that (i) the nanoparticles have a dual structure with an MPEG shell and a PCL core, originating from self-assembly of MPEG-PCL copolymer in aqueous condition, and (ii) the size of nanoparticles is dependent upon two sequential processes: diffusion between the organic and aqueous phases and solidification of the polymer.

Mechanism of Surface Corrosion in the Continuous Casting Guide Rolls

  • Fazlollah Sadeghi;Tahereh Zargar;Yoon-Uk Heo;Jae Sang Lee;Dong-Yong Park;NamKyu Park;Dae Geun Hong;Chang Hee Yim
    • Journal of Korea Foundry Society
    • /
    • v.43 no.2
    • /
    • pp.55-63
    • /
    • 2023
  • Due to the importance of the surface on the final slab quality, it is essential to maintain a smooth segment roll surface that is in touch with the thin solid shell during solidification. In this paper, the surface of the used continuous casting guide roll was analyzed to realize the mechanism of its surface deterioration. Surface analysis has revealed severe corrosion at two distinct areas leading to deep roughness occurring on the guide roll. Firstly, the severe corrosion follows prior austenite grain boundary due to exposure with acidic environment. Also, in heat affected zone (HAZ) where two cladding beads overlap, more severe corrosion takes place. The overheat input results in local ferritization without full melting which increases retained δ-ferrite content almost 10 times higher than surrounding area. Corrosion was observed to happen at the δ-γ interface where Cr depletion takes place.

Effect of Ti, B, Zr Elements on Grain Refinement and Castability of Al-4wt%Mg-0.9wt%Si-0.3wt%Mn-0.15wt%Fe Casting Alloy (주조용 Al-4wt%Mg-0.9wt%Si-0.3wt%Mn-0.15wt%Fe 합금의 결정립 미세화와 주조특성에 미치는 Ti, B, Zr 첨가원소의 영향)

  • Kim, Heon-Joo;Park, Su-Min
    • Journal of Korea Foundry Society
    • /
    • v.35 no.5
    • /
    • pp.120-127
    • /
    • 2015
  • The effects of Ti, B and Zr on grain refinement and castability were investigated in Al-4wt%Mg-0.9wt%Si-0.3wt%Mn-0.15wt%Fe alloy. Measurement of cooling curve and micro-structure observation were performed to analyze the effects of the addition of minor elements Ti, B and Zr during solidification. The prominence of effect on grain refinement was in increasing order for Ti, Zr and B element. Fine grain size and an increase of the crystallization temperature for ${\alpha}$-Al solution were evident as the amount of addition elements increased in this study. Addition of 0.15wt% Ti was most effective for grain refinement, and the resulting grain size of ${\alpha}$-Al solution for shell mold and steel mold were $72.3{\mu}m$ and $23.5{\mu}m$, respectively. Fluidity and shrinkage tests were perform to evaluate the castability of the alloy. Maximum fluidity length and minimum ratio of micro shrinkage were recorded for 0.15wt% Ti addition due to the effect of the finest grain size.

The study on the thermal deformation of the rotating rollers in strip continuous casting process (박판 연속 주조과정에 있어서 회전 로울러의 열변형에 관한 연구)

  • 백남주;이상매
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.6
    • /
    • pp.913-922
    • /
    • 1987
  • In this paper the solidification phenomena at the molten pool has been modeled and simulated in terms with the one dimensional unsteady-state heat transfer of the solid and molten phase and the pressure distribution in the solid phase for the twin-roller continuous casting of Sn-15% Pb. The further purpose of this study was to effectively analyze the thermal and mechanical deformation of roll applying the results of the heat transfer and the pressure distribution to the boundary conditions. The strip thickness of rapidly solidified metallic strip decreases with increasing angular velocity of the roller and with increasing initial roll gap. For this reason the roll spacing and angular velocity of the rolls are considered to be main variables. The recommended optimal casting regimes for continuous strip dimensions is near 0.8mm-1.0mm in thickness at the given angular velocity .omega.=2.0 rad/sec. Results of the experiment using Sn-15% Pb are compared with model predictions. The calculated roll deformation has been in good agreement with the observed value of roll deformatiion. All the deformation. All the deformation of the roller is within the elastic range, the plastic yielding are not occured. However, these elastic stresses are sufficient to take place of the shortened roller life by the thermal fatigue and a notch fatigue. The higher cooling rates were obtained by a twin-roller quenching technique. Also the quenched microstructure of the rapidly solidified shell was verified.

Characterization of the PVDF Fibers Fabricated by Hybrid Wet Spinning (하이브리드 습식 공정을 통한 PVDF 섬유의 제조 및 특성에 관한 연구)

  • Jeong, Kun;Kim, Seong-Su
    • Composites Research
    • /
    • v.29 no.4
    • /
    • pp.145-150
    • /
    • 2016
  • Polyvinylidene fluoride (PVDF) as a representative polymer with the piezoelectric property has been studied since the 1960s. Crystalline structure of poly(vinylidene fluoride) polymer is composed of five different crystal structure of the polymer as a semi-crystalline. Among the various crystal structures, ${\beta}-type$ crystal exhibits a piezoelectricity because the permanent dipoles are aligned in one direction. Generally ${\beta}-form$ crystal structure can be obtained through the transformation of the ${\alpha}-form$ crystal structure by the stretching and it can increase the amount through the after treatment as poling process after stretching. ${\beta}-form$ crystal structure the PVDF fibers produced by wet spinning is formed through a diffusion mechanism of a polar solvent in the coagulation bath. However, it has a disadvantage that the diffusion path of the solvent remains as pores in the fiber because the fiber solidification occurs simultaneously with the diffusion of the polar solvent. These pores play a role in reducing effect of poling process owing to effect of disturbances acting on the polarization by the electric field. In this work, the drying method using the microwave was introduced to remove more effectively the residual solvent and the pore within PVDF fibers produced through wet-spinning process and piezoelectric PVDF fibers was produced by transformation of the remaining ${\alpha}$ form crystal structure into ${\beta}-crystal$ structure through the stretching process.