• 제목/요약/키워드: Solidification condition

검색결과 125건 처리시간 0.025초

연속 주편의 응고와 벌징해석에 관한 연구 (Study for Solidification and Bulging of the Continuous Casting Slab)

  • 조종래
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2000년도 춘계학술대회논문집
    • /
    • pp.30-34
    • /
    • 2000
  • In this paper we analyzed bulging condition which affect the quality of continuous casting steel by using the numerical analytic method. First solidification analyses are performed for each cooling zones. Solidification analysis are carried out by one-dimensuional finite difference method. The bulging deformation of cast slab has been calculated with a two-dimensional elasto-plastic and creep finite element model. The adequacy of the model has been checked against the experimental results. From this study the effects of the process variables such as casting speed cooling condition roll pitch are examined. The results from these analyses would be able to apply to the design of continuous casting process.

  • PDF

합금 응고과정에서 자연대류가 거시편석에 미치는 영향 (The Effects of Natural Convection on Macrosegregation during Alloy Solidification)

  • 이균호;목진호;이진호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집B
    • /
    • pp.37-44
    • /
    • 2000
  • Numerical investigation is made to study the effects of natural convection on the formation of macrosegregation of a Pb-Sn alloy solidification process in a 2-D confined rectangle mold. The governing equations are calculated using previous continuum models with SIMPLE algorithm doring the solidification process. In addition. to track the solid-liquid interface with time variations. the moving boundary condition Is adopted and irregular interface shapes are treated with Boundary-Fitted Coordinate system. As the temperature reduce from the liquidus to the solidus, the liquid concentration of Sn. the lighter constituent, increases. Then the buoyancy-driven flow due to temperature and liquid composition gradients, called thermosolutal convection or double diffusion, occurs in the mushy region and forms the complicated macrosegregation maps. Related to this phnomena, effects on the macrosegregation formation depending on the cooling condition and gravity values are described.

  • PDF

초내열합금 CM247LC의 조직 및 인장특성에 미치는 초기 일방향응고 조건의 영향 (Effect of Initial Solidification Condition During Directional Solidification on the Grain Growth and the Tensile Properties of Superalloy CM247LC)

  • 정재준;권석환;정의석;조창용;이재현
    • 한국주조공학회지
    • /
    • 제42권2호
    • /
    • pp.77-82
    • /
    • 2022
  • 일방향응고 초내열합금 CM247LC의 응고조건에 따른 조직과 기계적 특성을 고찰하기 위해 초기 응고조건을 인위적으로 변화시켜 일방향응고를 진행하였다. 초기 응고 조건은 알루미나 판의 삽입, 접종재의 삽입, Ni foil의 삽입과 냉각판에 직접 주입 등으로 조절하였으며, 이에 따라 초기 결정립의 수의 많은 차이를 보였으며 응고방향과 평행으로 성장하는 결정립의 형태 및 γ' 석출상의 크기 등에서도 많은 차이를 보였다. 냉각속도가 빠른 용탕의 냉각판에 직접 주입한 경우 많은 결정립, 미세한 γ'상 및 γ-γ'공정상 등이 나타났다. 빠른 냉각은 고체/액체 사이의 온도구배를 증가시켜 일방향응고 후 1차 수지상 간격을 미세하게 함으로써 우수한 인장특성을 갖게 하였다.

초내열합금 René 80의 응고 조직과 열처리 후 인장특성의 변화 (Solidification Structure of Superalloy René 80 and Variation of Tensile Properties after Heat-Treatment)

  • 우한별;신종호;주윤곤;이재현
    • 한국재료학회지
    • /
    • 제30권12호
    • /
    • pp.678-686
    • /
    • 2020
  • Microstructural characteristics of directionally solidified René 80 superalloy are investigated with optical microscope and scanning electron microscope; solidification velocity is found to change from 25 to 200 μm/s under the condition of constant thermal gradient (G) and constant alloy composition (Co). Based on differential scanning calorimetry (DSC) measurement, γ phase (1,322 ℃), MC carbide (1,278 ℃), γ/γ' eutectic phase (1,202 ℃), and γ' precipitate (1,136 ℃) are formed sequentially during cooling process. The size of the MC carbide and γ/γ' eutectic phases gradually decrease with increasing solidification velocity, whereas the area fractions of MC carbide and γ/γ' eutectic phase are nearly constant as a function of solidification velocity. It is estimated that the area fractions of MC carbide and γ/γ' eutectic phase are determined not by the solidification velocity but by the alloy composition. Microstructural characteristics of René 80 superalloy after solid solution heat-treatment and primary aging heat-treatment are such that the size and the area fraction of γ' precipitate are nearly constant with solidification velocity and the area fraction of γ/γ' eutectic phase decreases from 1.7 % to 0.955 %, which is also constant regardless of the solidification velocity. However, the size of carbide solely decreases with increasing solidification velocity, which influences the tensile properties at room temperature.

강제 대류하에서의 알루미늄 응고에 관한 연구 (Solidification of the Aluminum with the Forced Liquid Convection)

  • 김형규;홍경태;허성강;윤우영
    • 한국주조공학회지
    • /
    • 제10권6호
    • /
    • pp.509-519
    • /
    • 1990
  • A Solidification of the aluminum was studied under the condition of the forced liquid convection. The Al melt was stirred by a highly rotating carbon bar on whose surface the solidified Al was nucleated. The Al was refined by partial solidification and the solute distributions were rationalized through the estimation of the solidification rate which is based on the heat transfer calculation of the process. The microstructure-morphological change of the specimens was also showed.

  • PDF

스티로나프타린 모형재료의 응고특성 (The Solidification Characteristics of Styronaphthalene Pattern Materials)

  • 박흥일
    • 한국주조공학회지
    • /
    • 제23권1호
    • /
    • pp.47-51
    • /
    • 2003
  • This experimental study was carried out to investigate the solidification characteristics of polystyrene added styronaphthalene pattern materials using various castability test methods. The styronaphthalene showed an excellent filling capacity and shaping behavior having about 0.2 mm meniscus radius. The shell thickness of styronaphthalene showing smooth wall at the solid/liquid interface increased with the increasing of polystyrene addition. The solidification microstructure of styronaphthalene showed a typical thin ribbon reinforced composite structure, which has fibrous amorphous skeleton of polystyrene and crystalline naphthalene. From the results of this study, it was found that the polystyrene added styronaphthalene showed a precision shaping behavior as disposable pattern material under the atmospheric condition.

A Study on a control algorithm and determinant of an optimal process condition based upon ESR process analysis.

  • Hyun, Lim-Sung;Suck, Boo-Kwang;Gyoon, Lim-Tae;Min, Wi-Chul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.76.4-76
    • /
    • 2001
  • ESR(ElectroSlag Remelting) Process is secondary fine process and melts steels by electric resistance heat and fines the melting steels by an approproate solidification process. The final products are determined through the velocity of melting and the course of solidification in the process that is achieved by way of proper course of solidification. Thus, it is very important to monitor and control the process parameters which affects the melting and solidification process to get the high quality products. This paper describes a method to derive the mathematical model and analysis the dynamic characteristics for designing a controller of the ESR processes. The process consists of a melting and solidifying process and electrical system include the contact resistance mechanism ...

  • PDF

일정한 응고속도를 갖는 2성분 응고에서 조성 대류의 특성 및 안정성 (Characteristics and Stability of Compositional Convection in Binary Solidification with a Constant Solidification Velocity)

  • 황인국
    • Korean Chemical Engineering Research
    • /
    • 제52권2호
    • /
    • pp.199-204
    • /
    • 2014
  • 2성분 응고계에서 다공성 mush 층에서의 조성 대류는 생성되는 제품의 질에 영향을 준다. 본 연구에서는 일정한 속도로 응고되는 mush 층을 고려하였다. 선형 안정성 이론을 사용하여 mush 층에 대한 교란방정식을 유도하였고, 기본상태 온도장과 mush 층에서 기공률의 분포를 수치해법으로 조사하였다. 과열량이 클 때 mush 층의 두께는 열경계층의 두께에 비해 상대적으로 작았다. 과열량이 감소함에 따라 mush 층의 두께를 기준으로 한 Rayleigh 수는 증가하였고, mush 층은 조성 대류에 대해 안정해졌다. mush 층의 윗면에 등온조건을 적용한 경우보다 온도 및 열속의 연속조건을 액체-mush 계면에 적용한 경우에 임계 Rayleigh 수가 더 작게 얻어졌다.

역류방지 체크밸브의 응고해석 특성 (Solidification Analysis Characteristics of Back Flow Prevention Check Valve)

  • 윤정인;문정현;손창효;이정진
    • 동력기계공학회지
    • /
    • 제19권3호
    • /
    • pp.69-74
    • /
    • 2015
  • Check valves used in vessels include shock-release function on piping system, aside from basic back flow prevention. However, proper and enough protection of system is not obtainable due to use of high-pressure and bulk fluids, resulting from enlargement of vessels. In this study, casting analysis of check valves protecting systems in flow path from water hammering or back flow is conducted, using Z-CAST program. Also, molten metal filling, flow analysis, solidification analysis and shrinkage cavity analysis are conducted. The main results are as following. Regarding filling of each risering, molten metal showed stable supply condition without being isolated. It was identified that the final solidification exists on risering, but shrinkage cavity possibly might happens at the point of isolation solidification.

용탕유동과 응고를 고려한 주조공정의 유한요소해석 (Finite element analysis of casting processes considering molten-metal flow and solidification)

  • 윤석일;김용환
    • 한국정밀공학회지
    • /
    • 제13권3호
    • /
    • pp.110-122
    • /
    • 1996
  • Finite element analysis tool was developed to analyze the casting process. Generally, casting process consists of mold filling and solidification. Both filling and solidication process were simulated simultaneously to investigate the effects of process variables and to predict the defect. At filling process, thermal coupling was especially considered to investigate thermal history of material during the filling stage. And thermal condition at the final stage of filling is used as the initial conditions in a solidification process for the exact simullation of the actual casting processes. At mold filling process, Lagragian-type finite element method with automatic remeshing scheme was used to find the material flow. A perturbation method with artificial viscosity is adopted to avoid numerical instability in low viscous fluid. At solidification process, enthalpy-based finite element method was used to solove the heat transfer problem with phase change. And elastic stress analysis has been performed to predict the thermal residual stress. Through the FE analysis, solidification time, position of solidus line, liquidus line and thermal residual stress are found. Through the study, the importance of combined analysis has been emphasized. Finite element tools developed in this study will be used process design of casting process and may be basic structure for total CAE system of castings which will be constructed afterward.

  • PDF