• Title/Summary/Keyword: Solidification

Search Result 1,325, Processing Time 0.022 seconds

Solidification Microstructures with Carbon Contents and Solidification Rates in Modified 12Cr-lMo Steels (개량 12Cr-1Mo강에서 탄소 함량 및 응고속도에 따른 응고 조직 형성 거동)

  • Eum C. Y;Lee J. H;Hur S. K;Chi B. H;Ryu S. H
    • Korean Journal of Materials Research
    • /
    • v.14 no.2
    • /
    • pp.101-109
    • /
    • 2004
  • The influences of solidification rates and carbon contents on the formation of the $\delta$-ferrite were studied by directional solidification in modified 12%Cr-l %Mo steels. Directional solidification experimental results showed that solidification microstructure depended on solidification rate and carbon content and chromium equivalent. The length of the mushy zone increased and the dendrite arm spacings decreased as the solidification rate increased. The volume fraction of the 8-ferrite decreased with increasing the solidification rate and carbon content. The volume fraction of the ferrite showed much higher at low solidification rates with planar and cellular interfaces than that at high solidification rates with dendritic interface. It is expected that macro-segregation of C causes lower C content at the lower solidification fraction in the directionally solidified sample, where lower C results in higher volume fraction of the ferrite. In order to estimate solidification microstructure in modified 12Cr-l%Mo steels, various solidification conditions, such as solidification rate, cooling rate, segregation, alloy composition, should be considered.

A Study of a Simultaneous Filling and Solidification During Casting Process (충전과 상변화 현상을 포함한 주조과정에 대한 연구)

  • Im, lk-Tae;Kim, Woo-Seung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.8
    • /
    • pp.987-996
    • /
    • 1999
  • An algorithm for modeling the filling of metal into a mold and solidification has been developed. This algorithm uses the implicit VOF method for a filling and a general implicit source-based method for solidification. The model for simultaneous filling and solidification is applied to the two-dimensional filling and solidification of a square cavity. The effects of the wall temperature and gate position on the solidification are examined. The mixed natural convection flow and residual flow resulting from the completion of a filling are included in this study to investigate the coupled effects of the filling and natural convection on solidification. Two different filling configurations (assisting flow and opposite flow due to the gate position) are analysed to study the effects of residual flow on solidification. The results clearly show the necessity to carry out a coupled filling and solidification analysis including the effect of natural convection.

Quantitative Evaluation of Solidification Crack Strength of AC2B Aluminum Casting Alloy (AC2B 알루미늄 주조합금의 정량적 응고균열 강도 평가)

  • Kim, Heon-Joo
    • Journal of Korea Foundry Society
    • /
    • v.34 no.4
    • /
    • pp.136-142
    • /
    • 2014
  • Numerical solution of thermal stress by CAE analysis could be an effective method in product development stage of castings to predict and treat the problem of solidification cracking of castings. Quantitative stress-strain data are necessary, in this case. Tension type apparatus of a solidification crack test which can measure stress-strain relationship quantitatively was developed and the test procedure was established by this research. Solidification crack strength obtained from the following test procedure could be utilized to evaluate it in terms of effect factors on thermo-plastic characteristic of solidifying alloy such as grain size of solid, grain morphology, distribution of solid grain, etc. Proposed test procedure is as follow: Prediction of temperature at the failure site of solidification cracked specimen by computer simulation of solidification, Calculation of solid fraction of the failure site from thermodynamic solution of solidification under Scheil condition.

A Study of Metallurgical Phenomena in Austenitic Stainless Steel Fusion Welds (I) -Weldability of Commercial Austenitic Stainless Steels- (오스테나이트계 스테인리스강 용접부의 금속학적 현상에 관한 연구(I) - 시판 오스테나이트계 스테인리스강의 용접성 -)

  • 이종섭;김숙환
    • Journal of Welding and Joining
    • /
    • v.16 no.3
    • /
    • pp.111-120
    • /
    • 1998
  • To predict and evaluate metallurgical and mechanical behavior of th welds, it is essential to understand solidification behavior and microstructural evolution experienced in the welds, neither of which follows the equilibrium phase diagram because of rapid heating and cooling conditions. Metallurgical phenomena in austenitic stainless steel fusion welds, types 304, 309S, 316L, 321 and 304N, were investigated in this study. Autogenous GTA welding was performed on weld coupons, and primary solidification mode and phase distribution were investigated from the welds. Varestraint test was employed to evaluate solidification cracking susceptibilities of the alloys. GTA weld fusion zones in type 304, 321 and 304N stainless steels experienced primary ferrite solidification while those in type 309S primary austenite solidification. Type 316L exhibited a mixed type of primary ferrite and primary austenite solidification. The primary solidification mode strongly depended on $Cr_{eq}/Ni_{eq}$ ratio. In terms of solidification cracking susceptibility, type 309S that solidified as primary austenite exhibited high cracking susceptibility while the alloys experienced primary ferrite solidification showed low cracking susceptibility. The relative ranking in solidification cracking susceptibility was type 304=type 304N < type 321 < type 316L < type 309S.

  • PDF

The Effect of Primary Solidification Mode on Physical Properties of Austenitic Stainless Steels (오스테나이트계 스텐리스 강의 물성에 미치는 초정응고 형식의 영향)

  • 정호신
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.26 no.4
    • /
    • pp.372-379
    • /
    • 1990
  • The effect of primary solidification phase on the solidification cracking sensitivity, corrosion resistance and toughness at cryogenic temperature was investigated for the austenitic stainless steel welds. The conclusions were summarized as follows; 1. Soldification crack sensitivity of austenitic stainless steel welds depends on the primary solidification mode. 2. Austenitic stainless steels were very susceptible to solidification cracking in case of solidification as primary ${\gamma}$ and immune when solidified as primary $\delta$. 3. When the ratio of Creq/Nieq is in the range of 1.46 to 1.55, the most resistance against solidification cracking was obtained. These results agreed well with the relationship between primary solidification mode, corrosion resistance and toughness at cryogenic temperature. 4. Optimum toughness, corrosion and solidification cracking resistance can be obtained when alloys having chemical compositions described above and solidifies as primary $\delta$ containing no ferrite at room temperature.

  • PDF

Numerical Modeling on Microsegregation with Tip-undercooling in Weld Metal of Binary Alloys (과냉을 고려한 2원계합금 용접용융부의 미시편적 거동에 대한 수치해석 모델링)

  • 박종민;박준민;이창희
    • Journal of Welding and Joining
    • /
    • v.17 no.4
    • /
    • pp.60-68
    • /
    • 1999
  • The previously developed two dimensional model was modified in order to predict more accurately the degree of microsegregation and eutectic fraction on in weld metal whose solidification rate is very fast. The model employed the same assumptions with previous model but considered of a tip undercooling. The previously predicted microsegregation and eutectic fraction has the discrepancies between simulated and examined results in the weld metal solidification. The experiments for the weld metal solidification of 2024 A1 and Fe-Ni alloy were carried out in order to examine the reasonability and feasibility of this modified model. The concentration profile of the solute and eutectic fraction predicted by the simulation agreed well with those found from experimental works. According to the results, it was believed that the dendrite tip undercooling considered in the modified model be reasonable for predicting the degree of microsegregation more accurately in weld metla solidification. In the GTA welds, degree of dendrite-tip undercooling increases with increasing solidification rage(welding speed). This serves to increase the concentration of dendrite core and thus result in reducing the degree of segregation. And solid state diffusion(back diffusion) during solidification is very low in the weld metal solidification so that little additional homogenization of solute occurs during solidification. With consideration of tip undercooling this modified model can predict exactly degree of microsegregation and eutectic fraction from slow solidification(casting) to fast solidification(welding).

  • PDF

Effect of Mold Preheat Temperature on Solidification Crack Strength of AC2B Aluminum Alloy (AC2B 알루미늄 주조합금의 응고균열 강도에 미치는 금형 예열온도의 영향)

  • Kim, Heon-Joo
    • Journal of Korea Foundry Society
    • /
    • v.34 no.5
    • /
    • pp.162-169
    • /
    • 2014
  • The effect of the mold preheat temperature on the solidification crack strength was investigated in AC2B aluminum alloy. A tension type apparatus as part of a solidification crack test which could measure the stress-strain relationship quantitatively was utilized. The evaluation of the solidification crack strength with varying mold preheat temperatures was performed by the test procedure established in this research. When the mold preheat temperatures were $250^{\circ}C$, $150^{\circ}C$ and $50^{\circ}C$, the solidification crack strengths were found to be $7.8Kgf/cm^2$, $12.9Kgf/cm^2$ and $28.6Kgf/cm^2$, respectively. In the same way, when the mold preheat temperatures were $250^{\circ}C$, $150^{\circ}C$ and $50^{\circ}C$, the corresponding temperatures of the failure sites were $610^{\circ}C$, $600^{\circ}C$ and $571^{\circ}C$, and the calculated solid fractions were 14.0%, 29.3% and 50.8% when the specimens failed, respectively. The solidification crack strength increased in proportion to the solid fraction of the failure site. The solidification crack strength obtained in this test is assumed to reflect the effects of metallurgical factors on the thermo-plastic characteristics of a solidifying alloy such as the grain size of the solid, the grain morphology, and the distribution of solid grain.

( Control of Primary Solidification Mode for Improving Solidification Cracking Resistance , Corrosion Resistance and Cryogenic Toughness of Austenitic Stainless Steel (오스테나이트계 스테인리스강의 응고균열저항 내식성 및 극저온 초성 향상을 위한 초정응고 형식의 제어)

  • 정호신
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.28 no.2
    • /
    • pp.208-215
    • /
    • 1992
  • Concept of primary solidification mode control was adopted to obtain optimal solidification crack resistance, hot ductility, corrosion resistance and toughness for austenitic stainless steel. By controlling primary solidification phase as primary $\delta$ and containing no ferrite at room temperature, optimal solidification crack resistance, hot ductility, corrosion resistance and cryogenic toughness could be obtained. The optimum chemical composition of austenitic stainless steel ranges 1.46~1.55(Creq/Nieq ratio) calculated by Schaeffler's equation.

  • PDF

A Study on Hot Cracking in Ni-Base Superalloy Welds (I) - Effect of Fe Contents on Solidification Cracking Susceptibility in Weld Metal - (Ni기 초내열합금 용접부의 고온균열에 관한 연구(I) - 용접금속의 응고균열 감수성에 미치는 Fe의 영향 -)

  • ;;Kazutoshi Nishimoto
    • Journal of Welding and Joining
    • /
    • v.19 no.6
    • /
    • pp.614-621
    • /
    • 2001
  • A study was carried out to determine the solidification cracking susceptibility of Ni-base superalloy as a function of Fe content in base metal. Three kinds of Ni-base superalloys with three different levels of Fe content were used. The solidification cracking susceptibility was evaluated by the Trans-Varestraint test at four different strain levels. Quantitative analysis of crack revealed that the solidification crack length and the temperature range in which hot cracking occurred in fusion zone (Brittle Temperature Range, BTR) decreased with a decrease in Fe content. Further, the thermo-calc data indicated that the solidification temperature range also decreased with decreasing Fe content. From these results, it was deduced that the improvement of the solidification cracking susceptibility with decreasing Fe content was attributed to the decrease of the solidification temperature range.

  • PDF

Effects of Solidification Modes on the Pit Initiation and Propagation in Austenitic Stainless Steel Weld Metals (오스테나이트계 스테인리스강 용착금속의 응고모드가 공식 생성 및 성장에 미치는 영향 x Effects of Solidification Modes on the Pit Initiation and Propagation in Austenitic Stainless Steel Weld Metals)

  • 최한신;김규영;이창희
    • Journal of Welding and Joining
    • /
    • v.16 no.6
    • /
    • pp.59-68
    • /
    • 1998
  • In this study, effects of solidification modes (primary $\delta$-ferrite, primary ${\gamma}$-austenite) on the pit initiation and propagation in the 304L and 316L austenitic stainless steel weld metals were investigated. The solidification mode of weld metal was controlled by the addition of nitrogen to Ar shielding gas. Through the electrochemical experiments (potentiodynamic anodic polarization and potentiostatic time-current transient test) and metallographic examination (microstructure and elemental distribution), the following results were obtained. The more the volume content of nitrogen in the shielding gas were, the lower critical current density for passivity was observed. In comparison with weldments solidified through the primary $\delta$-ferrite solidification mode and the primary ${\gamma}$-solidification mode, the former showed higher critical pitting potential and a longer incubation time for stable pit initiation than the latter. However, in the pit propagation stage the former exhibited a faster dissolution rate than the latter. These results were believed to ee related to the distribution of alloying elements such as Cr, Mo, Ni and S.

  • PDF