• Title/Summary/Keyword: Solid-state Welding

Search Result 78, Processing Time 0.025 seconds

FSW Properties of Aluminum alloy 5000/6000 for Small Boat (소형선박용 5000계/6000계 알루미늄합금제의 마찰교반접합 특성 연구)

  • Cho, Je-Hyoung;Kim, Myung-Hyun;Choi, Jun-Woong
    • Journal of Welding and Joining
    • /
    • v.32 no.1
    • /
    • pp.34-39
    • /
    • 2014
  • There are so many difficulties of melt bonding mainly applied for hull construction of a aluminum alloy small boat. For resolving this problem, Friction stir welding(FSW) in non-melting solid state welding Process generally is applied in the transport industry. This paper is studied the joining strength characteristics and macrostructure according to dissimilar aluminium 5000/6000 alloy joining for a small boat applied for this FSW technology. It is reported that difference of joining strength in accordance with the direction of rotation in case of friction stir welding between dissimilar metals(Al/Cu, Al/Fe) is also highly large. In this study, Test is carried out by making the specimen according to the direction of rotation of dissimilar aluminium alloy joining.

Manufacturing and Properties of Metal Based Composite Produced By Friction Stir Processing (마찰교반프로세스를 이용한 금속기 복합소재 제조 및 특성)

  • Choi, Don-Hyun;Yeon, Yun-Mo;Jung, Seung-Boo
    • Journal of Welding and Joining
    • /
    • v.30 no.5
    • /
    • pp.27-33
    • /
    • 2012
  • Friction stir processing (FSP), developed based on the basic principles of friction stir welding(FSW), a solid-state joining process originally developed for various metal alloys, is an emergingmetalworking technique that can provide localized modification and control of microstructures in near-surface layers of processed metallic components. The FSP causes intense plastic deformation, material mixing, and thermal exposure, resulting in significant microstructural refinement, densification, and homogeneity of the processed zone. The FSP technique has been successfully used for producing the fine-grained structure and surface composite, modifying the microstructure of materials, and synthesizing the composite and intermetallic compound in situ. In this review article, the current state of the understanding and development of FSP is addressed.

Analysis of Microsegregation in Fe-Cr-Ni Weld Metal (Fe-Cr-Ni강 용접금속부의 미세편석에 관한 해석)

  • 박준민;박종민;안상곤;이창희;윤의박
    • Journal of Welding and Joining
    • /
    • v.16 no.5
    • /
    • pp.56-66
    • /
    • 1998
  • During solidification or welding of alloys, the solute redistribution brings out microsegregation. The microsegregation causes the formation of non-equilibrium second phases, shrinkage and porosity degrading mechanical/chemical properties Therefore, it has been required to predict microsegregation quantitatively. To predict the degree of microsegregation, more exact and appropriate computer simulation technique has been actively used during last two decades. To predict the degree of microsegregation in weld metal, an advanced two dimensional model was suggested. In the new model, both primary and secondary arm regions were defined for the analysis region. The growth in the primary arm regina was assumed to be a planar for effective calculation. Especially, for the growth of a secondary arm, a simple and effective mathematical function was established to show the growing pattern, the solute diffusion in the solid phase was calculated by finite difference method (FDM). The solid-liquid interface movement was considered to be in local equilibrium state. The experiments for welding of 310S stainless steel were carried out in order to examined the reasonability and feasibility of this model. The concentration profiles of the solute predicted by this model were compared with those obtained from experimental works.

  • PDF

Effect of Circumferential Tool Path Control on Friction Stir Spot Welding of Al/Fe Dissimilar Metal Joint (툴 경로제어를 이용한 Al/Fe 이종금속 마찰교반점용접 공정특성 평가)

  • Yoon, Jin Young;Kim, Cheolhee;Rhee, Sehun
    • Journal of Welding and Joining
    • /
    • v.34 no.3
    • /
    • pp.6-11
    • /
    • 2016
  • Joining Al/Fe dissimilar metals is becoming a subject of special interest in the assembly of automotive parts as a trade-off between the weight lightening and the cost reduction. Although various studies have been introduced to join Al alloy with the steel sheet by fusion welding, weak joint strength and galvanic corrosion still remained as problems to be solved. As a solid state welding, friction stir welding has been preferred to fusion welding processes in the dissimilar metal joints. This study investigated friction stir spot welding (FSSW) of Al alloy to the thin steel sheet with a thickness of 0.65 mm. The conventional FSSW is a stationary spot welding process but new approach adopted an additional circumferential movement in company with high speed tool rotation. A full factorial experimental design was implemented, and the main and interaction effects of parameters were analysed on the failure load in the tensile shear test. The direction and radius of rotation were statistically significant parameters and these two parameters affected the joint width and the shape of the hook.

Evaluation of the Weldability of Cu Sheet through the Ultrasonic Metal Welding Experiment (Cu박판의 초음파 금속 용착 실험을 통한 용착성 평가)

  • Park, Woo-Yeol;Jang, Ho-Su;Kim, Jung-Ho;Park, Dong-Sam
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.4
    • /
    • pp.613-618
    • /
    • 2012
  • The Ultrasonic metal welding is used in the solid-phase welding method at room temperature or low temperature state. In welding process, the high frequency vibration energy is delivered to the welding part under the constant pressure for welding. In this study, we aimed to design and manufacture a 40,000 Hz band horn through finite element analysis. By performing modal analysis and harmonic response analysis, the modal analysis result is that the horn frequency was 39,599Hz and the harmonic response result that the horn frequency was 39,533Hz. These results were similar. In order to observe the designed horn's performance, about 4,000 voltage data was obtained from a light sensor and was analyzed by FFT analysis using Origin Tool. The result RMS amplitude was approximately $8.5{\mu}m$ at 40,000Hz, and maximum amplitude was $12.3{\mu}m$. Using this manufactured horn along with an ultrasonic metal welder and tension tester, the weldability of Cu sheets was evaluated. The maximum tensile force was 66.53 N in the welding condition of 2.0 bar pressure, 60% amplitude, and 0.32 s welding time. In excessive welding conditions, it was revealed that weldability is influenced negatively.

Temperature Behavior in Dissimilar Butt Joint During TIG Assisted Friction Stir Welding (TIG-FSW 하이브리드 용접을 이용한 이종재 맞대기 용접부의 온도 분포 특성)

  • Bang, Hee-Seon;Bijoy, M.S.
    • Journal of Welding and Joining
    • /
    • v.29 no.5
    • /
    • pp.63-71
    • /
    • 2011
  • Three-dimensional finite element analysis is performed to study the temperature distribution phenomenon of TIG assisted friction stir welding (TAFSW) between dissimilar plates (Al 6061-T6 and stainless steel 304). TAFSW is a solid-state welding process that integrates TIG (Tungsten Inert Gas) into a friction stir welding (FSW), to preheat the harder material ahead of FSW tool during welding. In order to facilitate the industrial application of welding, 3D numerical modeling of heat transfer has been carried out applying Finite Element Method (FEM). The temperature distribution due to heat generation during TAFSW on dissimilar materials joint is analysed using in-house solver. Moving heat source along with frictional heat between the work specimens and tool surface is considered to calculate the heat input. The analytical model used predicts successfully the maximum welding temperatures that occur on the dissimilar materials during TAFSW. Comparison with the infra red camera and thermocouple measurement results shows that the results from the current numerical simulation have good agreement with the measured data.

Numerical Simulation of Bubble and Pore Generations by Molten Metal Flow in Laser-GMA Hybrid Welding (레이저-GMA 하이브리드 용접에서 유동에 의한 기포 및 기공 형성 해석)

  • Cho, Won-Ik;Cho, Jung-Ho;Cho, Min-Hyun;Lee, Jong-Bong;Na, Suck-Joo
    • Journal of Welding and Joining
    • /
    • v.26 no.6
    • /
    • pp.67-73
    • /
    • 2008
  • Three-dimensional transient simulation of laser-GMA hybrid welding involving multiple physical phenomena is conducted neglecting the interaction effect of laser and arc heat sources. To reproduce the bubble and pore formations in welding process, a new bubble model is suggested and added to the established laser and arc welding models comprehending VOF, Gaussian laser and arc heat source, recoil pressure, arc pressure, electromagnetic force, surface tension, multiple reflection and Fresnel reflection models. Based on the models mentioned above, simulations of laser-GMA hybrid butt welding are carried out and besides the molten pool flow, top and back bead formations could be observed. In addition, the laser induced keyhole formation and bubble generation duo to keyhole collapse are investigated. The bubbles are ejected from the molten pool through its top and bottom regions. However, some of those are entrapped by solid-liquid interface and remained as pores. Those bubbles and pores are intensively generated when the absorption of laser power is largely reduced and consequently the full penetration changes to the partial penetration.

Investigation on friction stir welding and friction stir processing for 5456-H116 (5456-H116 합금에 대한 마찰교반 용접과 마찰교반 프로세싱에 관한 연구)

  • Kim, Seong-Jong;Park, Jae-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2009.05a
    • /
    • pp.242-243
    • /
    • 2009
  • Friction stir welding and friction stir processing is a new solid state processing technique for ioining and micro..structural modification in metallic materials. It has been applied not only joining for light metals but also modification of the microstructure to enhance mechanical properties. In thin study, we investigated the mechanical properties for applied friction stir welding and processing under various parameters such as probe diameter, probe type, traveling speed and rotating speed for 5456-H116 AI allov. As a result of experiments, optimum condition of friction stir welding is traveling speed of 15mm/min, rotating speed of 500RPM at 6mm diameter probe. Moreover, in the case of friction stir processing, the optimum condition is traveling speed of 15mm/min, rotating speed of 250RPM at full screw probe. As above mentioned, the mechanical characteristics enhanced with the decreasing of traveling speed and the increasing of friction areas because of plastic flow due to high friction heat. These result can be used as reference data for ship repairment.

  • PDF

Weld formation mechanism during friction stir spot welding of 6061 Al

  • Sato, Yutaka S.;Fujimoto, Mitsuo;Abe, Natsumi;Kokawa, Hiroyuki
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.239-242
    • /
    • 2009
  • Friction stir spot welding (FSSW), developed based on principle of friction stir welding, has been paid attention as a new solid-state spot welding process. Since FSSW can produce high-quality weld in Al alloys more easily than resistance spot welding, this process has been already used for construction of Al components in the automotive industries. Despite the large industrial interests in FSSW, fundamental knowledge on welding phenomena of this process has not been fully understood. In this study, FSSW phenomena, such as the consolidation mechanism, the microstructural evolution and the material flow, were examined in Al alloy 6061. This study clarified that the elliptical zone found in the vicinity of the pin hole on the cross section was characterized by the initially lapped surface of two sheets. Moreover, the following material flow was proposed; capture of the upper material with the threads on the pin surface, spiral flow along the tool rotation, and then release at the tip of the pin.

  • PDF

Process Development of Rotor Shaft using a Large Friction Welding (대형마찰용접을 이용한 로타샤프트 제조공정개발)

  • Jeong, H.S.;Cho, J.R.;Lee, N.K.;Park, H.C.;Choi, S.K.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.401-404
    • /
    • 2007
  • Inertia welding is a solid-state welding process in which butt welds in materials are made in bar and in ring form at the joint face, and energy required for welding is obtained from a rotating flywheel. The stored energy is converted to frictional heat at the interface under axial load. The quality of the welded joint depends on many parameters, including axial force, initial revolution speed and energy, amount of upset, working time, and residual stresses in the joint. Inertia welding was conducted to make the large rotor shaft for low speed marine diesel engine, alloy steel for shaft of 140mm. Due to different material characteristics, such as, thermal conductivity and flow stress, on the two sides of the weld interface, modeling is crucial in determining the optimal weld geometry and parameters. FE simulation was performed by the commercial code DEFORM-2D. A good agreement between the predicted and actual welded shape is observed. It is expected that modeling will significantly reduce the number of experimental trials needed to determine the weld parameters.

  • PDF