• Title/Summary/Keyword: Solid-solid phase transition

Search Result 206, Processing Time 0.026 seconds

The Rheological Behaviors of Solid-Liquid Transfer Emulsion (고상-액상 전이형 에멀젼의 레올로지 거동)

  • Park, Byeong-Gyun;Han, Jong-Sub;Lee, Sang-Min;Lee, Cheon-Koo;Yoon, Moung-Seok
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.31 no.2 s.51
    • /
    • pp.135-140
    • /
    • 2005
  • A solid state emulsion haying high velocity gradient shows two important transition ranges in the plot of storage modulus(G') as a function of shear strain, when the state is changed from solid to liquid. However, a solid state emulsion having low velocity gradient shows only one apparent transition range when the change from solid to liquid state takes place. The result implies the importance of the surface properties in the solid state emulsion. The addition of water phase in the solid state emulsion reduces the modulus in the modulus in the surface transition range by increasing interfacial friction and weakening the matrix. The addition of pigments increases the modulus in the modulus in the surface transition range by reinforcing the matrix, when there is no wafer phase in the solid state emulsion. When the solid state emulsion has water phase, however, the addition of pigments decreases the modulus in the modulus in the surface transition range.

Characterization of Drawn Polyethylene by Solid State $^{13}C$ Magic Angle Spinning NMR

  • Han, Oc-Hee
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.2 no.1
    • /
    • pp.24-32
    • /
    • 1998
  • Drawn polyethylene was studied by 13C cross polarization magic angle spinning techniques. Solid-solid phase transition from orthorhombic to monoclinic crystalline phase by drawing was observed. In addition, using a synchronized magic angle spinning 2 dimension technique, we confirmed that macroscopic ordering of the polyethylene was produced by drawing.

  • PDF

The Magnetoresistance in Iron-based Superconductors

  • Lv, B.;Xie, R.B.;Liu, S.L.;Wu, G.J.;Shao, H.M.;Wu, X.S.
    • Journal of Magnetics
    • /
    • v.16 no.2
    • /
    • pp.192-195
    • /
    • 2011
  • The phase transition of vortex matter from solid to liquid was studied in iron-based superconductors. Based on the traditional vortex glass theory, we have examined the magnetoresistivity data of iron-based superconductors using our extended thermal activation model: $\rho(B,T)=\rho((T-T_g(B))/(T_c(0)-T_g(B)))^{v(z-1)}$. We predict that the magnetic field-dependent area S + $S_0$ which integrates $\rho$ with T is proportional to $B^{\beta}$, where ${\beta}$ is the vortex glass transition exponent. From our calculation, the vortex glass transition exponent is 0.33, close to the exponent of area $S_0$ + S is 0.31 in $SmO_{0.9}F_{0.1}FeAs$; the exponent of area S is 0.63, which is close to the irreversibility line exponent 2/3. Both of the results show the validity of our model. In addition, our model is shown to be effective in describing irreversibility behavior in layered superconductors.

A study on the movement of Liquid DMPE and DLPE monolayer on a water subphase by Maxwell Displacement Currents (변위전류에 의한 DMPE, DLPE 지질막의 수면상 거동 연구)

  • ;;;;M. Iwamoto
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.11a
    • /
    • pp.191-194
    • /
    • 1996
  • Maxwell displacement current clearly shows the onset of a first order phase transition from gaseous to gaseous-fluid phase, and polar ordering of liquid molecules in the solid phase coexisting with fluid. For further monolayer compression in the fluid/solid phase transition, the condensation of domains was suggested.

  • PDF

Phase Transition Behavior and Dielectric Properties of Morphotropic Phase Boundary in (1-x)Pb(Yb1/2Nb1/2)O3-xPbTiO3 (0.40 ≤ x ≤ 0.60) Solid Solutions ((1-x)Pb(Yb1/2Nb1/2)O3-xPbTiO3 (0.40 ≤ x ≤ 0.60) 고용계에서의 PbTiO3 치환에 따른 상전이 영역의 상전이 거동과 유전특성)

  • Kim, Jung-Hyun
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.3
    • /
    • pp.253-259
    • /
    • 2012
  • In this study, crystal structural changes and dielectric properties of $(1-x)Pb(Yb_{1/2}Nb_{1/2})O_3-xPbTiO_3$ ((1-x)PYN-xPT) solid solutions were measured and analyzed with respect to the $PbTiO_3$ (PT) contents ($0.40{\leq}x{\leq}0.60$). From X-ray diffraction (XRD) measurements, (1-x)PYN-xPT solid solutions showed changes of the crystal structure from pseudocubic ($0.40{\leq}x{\leq}0.44$) to tetragonal ($0.52{\leq}x{\leq}0.60$) on increasing PT contents and exhibited the coexistence of pseudocubic and tetragonal phase near the morphotropic phase boundary (MPB) composition ($0.46{\leq}x{\leq}0.50$). The dielectric constant showed a maximum value at x = 0.46 and the maximum values in (1-x)PYN-xPT decreased with higher PT contents. The phase transition temperatures of (1-x)PYN-xPT solid solutions increased over the whole composition ranges tested ($0.40{\leq}x{\leq}0.60$).

Calculation of the Entropies and Chemical Potentials of Hard-Sphere Solutes Solvated in Hard-Sphere Solids Using the Radial Free-Space Distribution Function

  • 윤병집
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.10
    • /
    • pp.1209-1212
    • /
    • 1999
  • The entropies and chemical potentials of hard-sphere solutes solvated in hard-sphere solids were calculated by Monte Carlo method using the radial free-space distribution function. This method is based on calculating the entropy by comparing the free volume of a molecule with that of an ideal gas, and is applicable even when the size of solute is very large and the solvent is a solid. When the diameter of hard-sphere solute is small the solute molecule behaves as like as a fluid in solid structures, but when the diameter of solute becomes large, a fluid-to-solid phase transition takes place. The fluid-to-solid phase transition occurs at the region of the smaller size of solute with the more increase of solvent density. The least square fit values of analytical form of the radial free-space distribution functions of solute molecules are presented for future uses.

Ferroelectric Phase Transition Behavior in $(Na_{1/2}Bi_{1/2})TiO_3-PbTiO_3$ System ($(Na_{1/2}Bi_{1/2})TiO_3-PbTiO_3$ 고용체의 강유전 상전이 거동)

  • 홍국선;조서용;박승익
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.8
    • /
    • pp.915-921
    • /
    • 1995
  • The morphotropic phase boundary and phase transitions of the solid solutiion system, (1-x)(Na1/2Bi1/2)TiO3-PbTiO3+xPbTiO3 were studied by investigating changes in crystal structure, variations in permittivity with temperature, and calorimetric behavior. It was observed that the morphotropic phase boundary (MPB) of this solid solutiion system was at near 14 mol% of PbTiO3. Compositions containing less than 10mol% PbTiO3 (x<0.1) exhibited a phase transition, i.e. ferroelectric rhombohedrallongrightarrowparaelectric paraelectric cubic, with increasing temperature. Composition containing more than 14 mol% PbTiO3 (x 0.14) showed a phase transition from ferroelectric tetragonal to paraelectric cubic. In the composition range of 0.1$\varepsilon$ (T) curve, which coincided with a phase transition from ferroelectric rhombohedral to an intermediate phase, was also found.

  • PDF

Hydrogen Absorption by Laves Phase Related BCC Solid Solution Alloys

  • Akiba, Etsuo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.8 no.3
    • /
    • pp.101-109
    • /
    • 1997
  • We propose a new concept of hydrogen absorbing alloy, "Laves phase related BCC solid solution". It was firstly found among the phases tormed in multicomponent nominal $AB_2$ alloys which consisted of Zr and Ti for the A metal site and 5A, 6A and 7A transition metals for the B metal sites. In these alloys a BCC solid solution often coexisted with a Laves phase. It showed stability of hydrides and reaction kinetics almost identical to intermetallics such as Laves phase alloys. We prepared an almost pure "Laves phase related BCC solid solution" and found that it had a large hydrogen capacity (more than 2 mass%) and fast hydrogen absorption and desorption kinetics at ambient temperature and pressure. This new hydrogen absorbing alloy may open a new era of hydrogen related application such as hydrogen vehicles.

  • PDF