• 제목/요약/키워드: Solid-phase microextraction gas chromatography/mass spectrometry

검색결과 88건 처리시간 0.022초

Elicitation of Innate Immunity by a Bacterial Volatile 2-Nonanone at Levels below Detection Limit in Tomato Rhizosphere

  • Riu, Myoungjoo;Kim, Man Su;Choi, Soo-Keun;Oh, Sang-Keun;Ryu, Choong-Min
    • Molecules and Cells
    • /
    • 제45권7호
    • /
    • pp.502-511
    • /
    • 2022
  • Bacterial volatile compounds (BVCs) exert beneficial effects on plant protection both directly and indirectly. Although BVCs have been detected in vitro, their detection in situ remains challenging. The purpose of this study was to investigate the possibility of BVCs detection under in situ condition and estimate the potentials of in situ BVC to plants at below detection limit. We developed a method for detecting BVCs released by the soil bacteria Bacillus velezensis strain GB03 and Streptomyces griseus strain S4-7 in situ using solid-phase microextraction coupled with gas chromatography-mass spectrometry (SPME-GC-MS). Additionally, we evaluated the BVC detection limit in the rhizosphere and induction of systemic immune response in tomato plants grown in the greenhouse. Two signature BVCs, 2-nonanone and caryolan-1-ol, of GB03 and S4-7 respectively were successfully detected using the soil-vial system. However, these BVCs could not be detected in the rhizosphere pretreated with strains GB03 and S4-7. The detection limit of 2-nonanone in the tomato rhizosphere was 1 µM. Unexpectedly, drench application of 2-nonanone at 10 nM concentration, which is below its detection limit, protected tomato seedlings against Pseudomonas syringae pv. tomato. Our finding highlights that BVCs, including 2-nonanone, released by a soil bacterium are functional even when present at a concentration below the detection limit of SPME-GC-MS.

Analysis of Agrochemical Residues in Tobacco Using Solid Phase Microextraction-Gas Chromatography with Different Mass Spectrometric Techniques

  • Lee, Jeong-Min;Jang, Gi-Chul;Kim, Hyo-Keun;Hwang, Geon-Joong
    • 한국연초학회지
    • /
    • 제30권2호
    • /
    • pp.117-124
    • /
    • 2008
  • A solid phase microextraction (SPME) method in combination with gas chromatography/mass spectrometric techniques was used for the extraction and quantification of 12 selected agrochemical residues in tobacco. The parameters such as the type of SPME fiber, adsorption/desorption time and the extraction temperature affecting the precision and accuracy of the SPME method were investigated and optimized. Among three types of fibers investigated, polyacrylate (PA), polydimethylsiloxane (PDMS) and polydimethylsiloxane-divinylbenzene (PDMS-DVB), PDMS fiber was selected for the extractions of the agrochemicals. The SPME device was automated and on-line coupled to a gas chromatograph with a mass spectrometer. Mass spectrometry (MS) was used and two different instruments, a quadrupole MS and triple quadrupole MS-MS mode, were compared. The performances of the two GC-MS instruments were comparable in terms of linearity (in the range of 0.01$\sim$0.5 $\mu$g/mL) and sensitivity (limits of detection were in the low ng/mL range). The triple quadrupole MS-MS instrument gave better precision than that of quadrupole MS system, but generally the relative standard deviations for replicates were acceptable for both instruments (< 15%). The LODs was fully satisfied the requirements of the CORESTA GRL. Recoveries of 12 selected agrochemicals in tobacco yielded more than 80% and reproducibility was found to be better than 10% RSD so that SPME procedure could be applied to the quantitative analysis of agrochemical residues in tobacco.

Determination of Volatile Organic Compounds (VOCs) Using Tedlar Bag/Solid-phase Microextraction/Gas Chromatography/Mass Spectrometry (SPME/GC/MS) in Ambient and Workplace Air

  • Lee, Jae-Hwan;Hwang, Seung-Man;Lee, Dai-Woon;Heo, Gwi-Suk
    • Bulletin of the Korean Chemical Society
    • /
    • 제23권3호
    • /
    • pp.488-496
    • /
    • 2002
  • SPME techniques have proven to be very useful tools in the analysis of wide VOCs in the air. In this study, we estimated VOCs in ambient and workplace air using a Tedlar ba /SPME/GC/MS system. The calibration curve was set to be linear over the range of 1-30 ppbv. The detection limits ranged from 10 pptv to 0.93 ppbv for all VOCs. Reproducibility of TO-14 target gas mixtures by SPME/GC/MS averaged at 8.8 R.S.D (%). Air toxic VOCs (hazardous air pollutants, HAPs) containing a total of forty halohydrocarbons, aromatics, and haloaro-matic carbons could be analyzed with significant accuracy, detection limit and linearity at low ppbv level. Only reactive VOCs with low molecular weight, such as chloromethane, vinylchloride, ethylchloride and 1,2-dichloro-ethane, yielded relatively poor results using this technique. In ambient air samples, ten VOCs were identified and quantified after external calibration. VOC concentration in ambient and workplace air ranged from 0.04 to 1.85 ppbv. The overall process was successfully applied to identify and quantify VOCs in ambient/workplace air.

SPME-GC-MS를 이용한 담배와 관련된 향료의 분석 (Analysis of Flavor-related Compounds from Tobacco using SPME-GC-MS)

  • 박교범;이석근
    • 분석과학
    • /
    • 제14권2호
    • /
    • pp.109-114
    • /
    • 2001
  • 담배에 포함된 향료 성분을 headspace solid phase microextraction(SPME)를 이용하여 gas chromatography-mass spectrometry(GC-MS)의 selected ion monitoring(SIM)방법으로 분석하였다. 본 연구에서 사용한 담배향과 관련된 성분은 estragole, pulegone, trans-anethole, safrole, piperonal, eugenol, methyleugenol, coumarin, trans-isoeugenol, trans-methylisoeugenol 및 myristicin 등 11종이며 분석결과 모든 담배에서 한가지 또는 그 이상의 담배향 성분을 $0.001-1.3{\mu}g/g$ 검출할 수 있었으며 회수율은 89.1-102.9%로 나타났고 상대표준편차는 2.6-25.2%를 얻었다.

  • PDF

Comparative Study on Volatile Flavor Compounds of Traditional Chinese-type Soy Sauces Prepared with Soybean and Defatted Soy Meal

  • Gao, Xian-Li;Zhao, Hai-Feng;Zhao, Mou-Ming;Cui, Chun;Ren, Jiao-Yan
    • Food Science and Biotechnology
    • /
    • 제18권6호
    • /
    • pp.1447-1458
    • /
    • 2009
  • Volatile extracts obtained from traditional Chinese-type soy sauces prepared with soybean (SSSB) and defatted soy meal (SSDSM) by solid phase microextraction (SPME) and direct solvent extraction (DSE) were analyzed by gas chromatography-mass spectrometry (GC-MS). The volatile flavor compounds and relative contents of different chemical classes detected in SSSB and SSDSM were compared for their differences. Results showed that significant differences in both constituents of volatile flavor compounds and relative contents of different chemical classes were observed for both kinds of soy sauces. A total of 152 and 131 compounds were identified in SSSB and SSDSM, respectively, and 102 volatile flavor compounds were common in both kinds of soy sauces. Moreover, relative contents of acids, aldehydes, esters, furan(one)s, miscellaneous compounds, phenols, pyrazines, pyrrol(idinon)es, and sulfur-containing compounds in both kinds of soy sauces were all significantly different.

Analysis of fatty acid methyl ester in bio-liquid by hollow fiber-liquid phase microextraction

  • Choi, Minseon;Lee, Soyoung;Bae, Sunyoung
    • 분석과학
    • /
    • 제30권4호
    • /
    • pp.174-181
    • /
    • 2017
  • Bio-liquid is a liquid by-product of the hydrothermal carbonization (HTC) reaction, converting wet biomass into solid hydrochar, bio-liquid, and bio-gas. Since bio-liquid contains various compounds, it requires efficient sampling method to extract the target compounds from bio-liquid. In this research, fatty acid methyl ester (FAME) in bio-liquid was extracted based on hollow fiber supported liquid phase microextraction (HF-LPME) and determined by Gas Chromatography-Flame Ionization Detector (GC-FID) and Gas Chromatography/Mass Spectrometry (GC/MS). The well-known major components of biodiesel, including methyl myristate, palmitate, methyl palmitoleate, methyl stearate, methyl oleate, and methyl linoleate had been selected as standard materials for FAME analysis using HF-LPME. Physicochemical properties of bio-liquid was measured that the acidity was 3.30 (${\pm}0.01$) and the moisture content was 100.84 (${\pm}3.02$)%. The optimization of HF-LPME method had been investigated by varying the experimental parameters such as extraction solvent, extraction time, stirring speed, and the length of HF at the fixed concentration of NaCl salt. As a result, optimal conditions of HF-LPME for FAMEs were; n-octanol for extraction solvent, 30 min for extraction time, 1200 rpm for stirring speed, 20 mm for the HF length, and 0.5 w/v% for the concentration of NaCl. Validation of HF-LPME was performed with limit of detection (LOD), limit of quantitation (LOQ), dynamic range, reproducibility, and recovery. The results obtained from this study indicated that HF-LPME was suitable for the preconcentration method and the quantitative analysis to characterize FAMEs in bio-liquid generated from food waste via HTC reaction.

SPME-GC-MS를 이용하여 풍선에 포함된 가소제의 분석 (Determination of Plasticizers included in Balloon by Solid Phase Microextraction and Gas Chromatography with Mass Spectrometric Detection)

  • 박현미;김지현;류재천;김영만;이강봉
    • 분석과학
    • /
    • 제14권1호
    • /
    • pp.44-49
    • /
    • 2001
  • GC-MS와 연결된 $85{\mu}m$ 폴리 아크릴레이트 fiber의 SPME가 풍선 시료 중에 포함된 가소제를 분석하는데 사용되었다. 풍선은 IR 분광법에 의해 폴리이소프렌으로 만들어진 것으로 판명되었다. 한시간 동안 아세톤이 첨가된 물 용매에서 추출된 풍선의 가소제는 9종류의 가소제가 포함된 외부표준법에 의해 정량 하였다. 정량법은 $0.25-25{\mu}g/g$의 농도범위에서 표준 가소제들에 대하여 유효화 과정을 거쳤으며, 검출한계는 가소제에 따라 $0.11-0.38{\mu}g/g$이었고, 이러한 정량법에 의한 재현성의 RSD는 3.7-14.2%이었다. 이들 풍선 중에는 우려할만한 수준의 환경호르몬성 가소제가 검출되는 제품도 포함되어 있어 이들에 대한 규제의 필요성이 있다.

  • PDF

Solid Phase Microextraction 및 Purge & Trap을 이용한 생물시료 중 휘발성 유기화합물의 GC/MS 분석비교 (Comparison Solid Phase Microextraction with Purge & Trap on the GC/MS Analysis of Volatile Organic Compounds in Biota Samples)

  • 안윤경;서종복;홍종기
    • 분석과학
    • /
    • 제14권5호
    • /
    • pp.392-399
    • /
    • 2001
  • 생물시료에 존재하는 휘발성 유기화합물 중 n-butylbenzene과 1,2-dibromo-3-chloropropane (DBCP)를 기체크로마토그래피/질량분석기-선택이온검색법에 의해 수행하였다. 시료 중 휘발성 유기화합물은 $100{\mu}m$ polydimethyl siloxane (PDMS) fiber를 사용하여 headspace solid phase microextractio (SPME) 및 purge & trap 방법에 의해 추출 및 비교하였다. SPME에 의한 회수율은 n-butylbenzene의 경우 85.8%, DBCP의 경우 92.4%로 나타났고 검출한계는 각각 $0.15{\mu}g/kg$, $0.05{\mu}g/kg$로 나타났다. 반면, purge & trap의 경우 회수율은 n-butylbenzene의 경우 115.2%, DBCP의 경우는 80.9%로 나타났고 검출한계는 각각 $0.04{\mu}g/kg$$0.70{\mu}g/kg$로 나타나 두 방법에 있어 국내에서 규제하는 검출한계측면에서 큰 차이는 없었다.

  • PDF

Fiber내 유도체화/HS-SPME를 이용한 수용액 시료 중 휘발성 지방산의 분석 (Determination of Volatile Fatty Acids in Aqueous Samples by HS-SPME with In-Fiber Derivatization)

  • 안윤경;이지연;김지형;홍종기
    • 분석과학
    • /
    • 제16권6호
    • /
    • pp.458-465
    • /
    • 2003
  • 수용액 시료 중 휘발성 지방산을 HS (headspace)-SPME (Solid phase microextraction)를 이용하여 간편하고 빠르게 분석하는 방법에 대하여 연구하였다. 1-Pyrenyldiazomethane (PDAM)을 이용한 화이버 내 유도체화를 통하여 휘발성 지방산의 검출감도를 향상시킬 수 있었으며, SPME 추출조건으로 pH, 염 효과 및 초음파 추출에 대하여 조사하였다. 본 연구에서 개발된 방법을 기반으로 실제 폐수 중 휘발성 지방산을 추출하여 기체크로마토그래피/질량분석기-선택이온검색법으로 정량 분석하였다.

포장재의 종류에 따른 저장 중 카레분말의 향 안정성 변화 (Effect of Packaging on Aroma Stability of Curry Powder during Storage)

  • 최준봉
    • 한국식품조리과학회지
    • /
    • 제29권2호
    • /
    • pp.147-152
    • /
    • 2013
  • The objective of this study was to evaluate the effects of packaging on the aroma stability of curry powder during storage. The Volatile flavor compounds from curry powders packed with laminated film or vinyl were analyzed by the solid phase microextraction and gas chromatography-mass spectrometry during in storage at $25^{\circ}C$ for 13 weeks. Forty-eight compounds, comprising 36 terpenes, 5 alcohols, 4 benzenes, 2 carbonyl compounds, and 1 ester, were identified from the curry powders. The main volatile compounds were cuminaldehyde, anethole, and eugenol. The Volatile compounds of curry powder packed with laminated film were maintained unchanged during in the storage, whereas those packed in vinyl were decreased during the storage. The amounts of p-cymene, cuminaldehyde, anethole, and (E)-caryophyllene from curry powder packed with laminated film were maintained during storage, while those packed with vinyl decreased gradually. The aroma stability of eugenol was unaffected by packaging. The results indicates that curry powder is best packaged in with laminated film to maintain the aroma stability during storage.