• 제목/요약/키워드: Solid water phantom

검색결과 70건 처리시간 0.024초

6MV 광자선에서 측정조건의 변화와 측정법의 차이에 의한 절대 선량값의 비교 (The Comparison of Absolute Dose due to Differences of Measurement Condition and Calibration Protocols for Photon Beams)

  • 김회남
    • 대한방사선치료학회지
    • /
    • 제10권1호
    • /
    • pp.11-22
    • /
    • 1998
  • The absolute absorbed dose can be determined according to the measurement conditions ; measurement material, detector, energy and calibration protocols. The purpose of this study is to compare the absolute absorbed dose due to the differences of measurement condition and calibration protocols for photon beams. Dosimetric measurements were performed with a farmer type PTW and NEL ionization chambers in water, solid water, and polystyrene phantoms using 6MV photon beams from Siemens linear accelerator. Measurements were made along the central axis of $10{\times}10cm$ field size for constant target to surface distance of 100cm for water, solid water and polystyrene phantom. Theoretical absorbed dose intercomparisons between TG21 and IAEA protocol were performed for various measurement combinations on phantom, ion chamber, and electrometer. There were no significant differences of absorbed dose value between TG2l and IAEA protocol. The differences between two protocols are within $1\%\;while\;the\;average\;value\;of\;IAEA\;protocol\;was\;0.5\%$ smaller than TG2l protocol. For the purpose of comparison, all the relative absorbed dose were nomalized to NEL ion chamber with Keithley electrometer and water phantom, The average differences are within $1\%,\;but\;individual\;discrepancies\;are\;in\;the\;range\;of\;-2.5\%\;to\;1.2\%$ depending upon the choice of measurement combination. The largest discrepancy of $-25\%$ was observed when NEL ion chamber with Keithley electrometer is used in solid water phantom. The main cause for this discrepancy is due to the use of same parameters of stopping power, absorption coefficient, etc. as used in water phantom. It should be mentioned that the solid water phantom is not recommended for absolute dose calibration as the alternative of water, since absorbed dose show some dependency on phantom material other than water. In conclusion, the trend of variation was not much dependent on calibration protocol. However, It shows that absorbed dose could be affected by phantom material other than water.

  • PDF

불균질부 방사선치료 시 계획 선량의 정확성 평가 (Evaluation of Planning Dose Accuracy in Case of Radiation Treatment on Inhomogeneous Organ Structure)

  • 김찬용;이제희;곽용국;하민용
    • 대한방사선치료학회지
    • /
    • 제25권2호
    • /
    • pp.137-143
    • /
    • 2013
  • 목 적: 불균질부를 포함하고 있는 치료부위의 치료계획 시 불균질 경계면에서의 TPS상 선량분포와 phantom을 이용하여 측정된 실제 선량분포를 비교하여 그 차이를 알아보고자 한다. 대상 및 방법: 4 cm 두께의 solid water phantom 사이에 폐와 유사한 밀도를 가진 8 cm 두께의 cork (density: 0.23 $g/cm^2$)를 위치시켜 phantom을 제작하여 CT 영상을 획득하였으며, 본원에서 사용하고 있는 Pinnacle 치료계획 시스템의 Collapsed-cone(CC) convolution 선량계산 알고리즘을 이용하여 6/15 MV 광자선으로 치료 계획된 선량분포와 실제 phantom에 EBT2 필름을 삽입해 측정한 선량을 비교 평가하였다. 또한 실제 폐암 환자와 유사한 치료계획을 비교하기 위해 Phantom 내부에 치료하고자 하는 종양부위(target volume)로 가정한 파라핀($3{\times}3{\times}3$ cm)을 Location "A" (일반조직과 떨어져있는 가상의 종양: 섬모델)와 Location "B" (일반조직과 붙어있는 가상의 종양: 반도모델)에 삽입하여 CT scan 후 치료계획을 시행하였다. 선량계획과 동일한 조건으로 Phantom을 set-up 후 Phantom의 paraffin target volume 경계면 A (Ant방향), B (Rt방향), C (Post 방향) point에 필름을 삽입하고 방사선을 조사하여 측정된 선량을 TPS선량과 비교평가 하였다. 결 과: 불균질 phantom을 이용한 계획선량과 측정선량과의 차이는 solid water와 cork 경계면을 제외한 부분에서 선량차이가 크지 않았지만 밀도가 급격히 변화하는 첫 번째 구간과 두 번째 구간에서 -5.4%~-12.6%의 선량감소를 보였다. 또한 paraffin target을 삽입한 실험에서는 Location "A"의 경우 실제 측정선량이 A, B, C point에서 각각 -2.5~-4.7%, -2.3~-2.8%, -4.5~-8.8%의 낮은 선량을 나타냈으며, Location "B"의 경우에도 A, B, C point에서 각각 0.08~5.27%, -3.17~-4.74%, -7.86~-11.56%의 선량 차이를 나타내었다. 결 론: 이번 연구의 결과 불균질부 내에서의 치료계획 시스템의 계획된 선량과 실제 측정된 선량에 오차의 가능성이 확인되었다. 급속도로 발전하고 있는 방사선 치료기술과 그만큼 정밀함을 요하는 치료계획 시 이러한 가능성에 대해 인지하고 선량검증에 대한 여러 방법들을 연구하고 개발하는 것이 치료의 발전과 필수적으로 동반되어야 할 것이며 본원에서도 이번 연구를 통해 치료계획 시 발생할 수 있는 변수에 대해서 더 주의 깊게 판단하고 적용할 수 있을 것으로 사료된다.

  • PDF

Properties of Water Substitute Solid Phantoms for Electron Dosimetry

  • Saitoh, Hidetoshi;Tomaru, Teizo;Fujisaki, Tatsuya;Abe, Shinji;Myojoyama, Atsushi;Fukuda, Kenichi
    • 한국의학물리학회:학술대회논문집
    • /
    • 한국의학물리학회 2002년도 Proceedings
    • /
    • pp.255-259
    • /
    • 2002
  • To reduce the uncertainty in the calibration of radiation beams, absorbed dose to water for high energy electrons is recommended as the standards and reference absorbed dose by AAPM Report no.51 and IAEA Technical Reports no.398. In these recommendations, water is, defined as the reference medium, however, the water substitute solid phantoms are discouraged. Nevertheless, when accurate chamber positioning in water is not possible, or when no waterproof chamber is available, their use is permitted at beam qualities R$\_$50/ < 4 g/cm$^2$ (E$\_$0/ < 10 MeV). For the electron dosimetry using solid phantom, a depth-scaling factor is used for the conversion of depth in solid phantoms to depth in water, and a fluence-scaling factor is used for the conversion of ionization chamber reading in plastic phantom to reading in water. In this work, the properties, especially depth-scaling factors c$\_$p1/ and fluence-scaling factors h$\_$pl/ of several commercially available water substitute solid phantoms were determined, and the electron dosimetry using these scaling method was evaluated. As a result, it is obviously that dose-distribution in solid phantom can be converted to appropriate dose-distribution in water by means of IAEA depth-scaling.

  • PDF

고체팬텀을 이용한 국내 방사선 치료시설의 흡수선량에 대한 조사 (External Auditing on Absorbed Dose Using a Solid Water Phantom for Domestic Radiotherapy Facilities)

  • 최창헌;김정인;박종민;박양균;조건우;조운갑;임천일;예성준
    • Radiation Oncology Journal
    • /
    • 제28권1호
    • /
    • pp.50-56
    • /
    • 2010
  • 목 적: 제 3기관에 의해 독립적으로 수행된 방사선 치료 빔의 흡수 선량을 외부 감사의 결과로 보고 한다. 이를 위해 쉽고 편리하게 설치 가능 한 고체 팬텀을 이용하여 흡수 선량을 측정하는 방법을 개발했다. 대상 및 방법: 2008년 12개 방사선 치료 시설에서 외부 감사 프로그램에 참여하였고 47개의 광자선과 전자선의 제 3기관에 의해 American Association of Physicists in Medicine (AAPM) task group (TG)-51 프로토콜을 사용하여 독립적으로 교정되었다. AAPM TG-51 프로토콜은 물에서의 측정을 권고 하고 있지만 팬텀으로 물은 바쁜 병원 상황에선 몇 가지 단점이 있다. 설치와 수송이 편리하고 재현성이 있는 고체 팬텀을 사용하였다. 광자선과 전자선에 대한 물과 고체 팬텀 사이의 선량 보정인자는 스케일링 방법과 실험적 측정에 의해 결정되었다. 결 과: 대부분의 빔은(74%) 제3기관의 프로토콜로 측정한 결과 2%의 편차 이내였다. 그러나 20개 중 2개의 광자선과 27개 중 3개의 전자선은 허용범위(3%)를 초과 하였다. 특히 그중 2개의 빔은 10% 이상의 편차를 보여주고 있다. 6 MV 초과의 고에너지 광자선은 보정인자가 없었다. 6 MV 광자선의 경우 고체 팬텀에서의 흡수선량은 물에서의 흡수 선량보다 0.4% 작게 나타났다. 전자선에 대한 보정인자도 결정되었는데 전자선의 에너지가 증가함에 따라 보정인자는 작아지는 경향을 보여준다. 고체팬텀을 사용한 TG-51 프로토콜의 측정 오차는 ${\pm}1.22%$로 나타났다. 결 론: 개발된 방법은 다기관 임상 연구의 인증 프로그램에 참여할 수 있는 외부 감사 기관 프로그램에 성공적으로 적용되었다. 이 선량측정은 선량을 측정하기 위한 시간을 줄이고 물을 설치할 때의 생길 수 있는 측정오차를 감소시킨다.

Development of a polystyrene phantom for quality assurance of a Gamma Knife®

  • Yona Choi;Kook Jin Chun;Jungbae Bahng;Sang Hyoun Choi;Gyu Seok Cho;Tae Hoon Kim;Hye Jeong Yang;Yeong Chan Seo;Hyun-Tai Chung
    • Nuclear Engineering and Technology
    • /
    • 제55권8호
    • /
    • pp.2935-2940
    • /
    • 2023
  • A polystyrene phantom was developed following the guidance of the International Atomic Energy Association (IAEA) for gamma knife (GK) quality assurance. Its performance was assessed by measuring the absorbed dose rate to water and dose distributions. The phantom was made of polystyrene, which has an electron density (1.0156) similar to that of water. The phantom included one outer phantom and four inner phantoms. Two inner phantoms held PTW T31010 and Exradin A16 ion chambers. One inner phantom held a film in the XY plane of the Leksell coordinate system, and another inner phantom held a film in the YZ or ZX planes. The absorbed dose rate to water and beam profiles of the machine-specific reference (msr) field, namely, the 16 mm collimator field of a GK PerfexionTM or IconTM, were measured at seven GK sites. The measured results were compared to those of an IAEA-recommended solid water (SW) phantom. The radius of the polystyrene phantom was determined to be 7.88 cm by converting the electron density of the plastic, considering a water depth of 8 g/cm2. The absorbed dose rates to water measured in both phantoms differed from the treatment planning program by less than 1.1%. Before msr correction, the PTW T31010 dose rates (PTW Freiberg GmbH, New York, NY, USA) in the polystyrene phantom were 0.70 (0.29)% higher on average than those in the SW phantom. The Exradin A16 (Standard Imaging, Middleton, WI, USA) dose rates were 0.76 (0.32)% higher in the polystyrene phantom. After msr correction factors were applied, there were no statistically significant differences in the A16 dose rates measured in the two phantoms; however, the T31010 dose rates were 0.72 (0.29)% higher in the polystyrene phantom. When the full widths at half maximum and penumbras of the msr field were compared, no significant differences between the two phantoms were observed, except for the penumbra in the Y-axis. However, the difference in the penumbra was smaller than variations among different sites. A polystyrene phantom developed for gamma knife dosimetry showed dosimetric performance comparable to that of a commercial SW phantom. In addition to its cost effectiveness, the polystyrene phantom removes air space around the detector. Additional simulations of the msr correction factors of the polystyrene phantom should be performed.

6MV 광자선에서 측정 조건의 변화와 측정법의 차이에 의한 절대 선량값의 비교 (The Comparison of Absolute Dose due to Differences of Measurement Condition and Calibration Protocols for Photon Beams)

  • 김회남;박성용;서태석;권수일;윤세철
    • 한국의학물리학회지:의학물리
    • /
    • 제8권2호
    • /
    • pp.87-102
    • /
    • 1997
  • 목적 : 방사선량 측정시 에너지, 매질, 측정기 등의 측정 조건과 측정 프로토콜에 따라 절대 흡수선량값이 결정된다. 본 연구에서는 이러한 측정 조건의 변화와 측정 프로토콜의 차이에 따른 절대 선량 값을 구하여 비교 분석 하고자 한다. 방법 : 시멘스 선형가속기에서 발생하는 6MV 광자선을 이용하여 3개의 다른 매질(물, 고체 물팬텀, 폴리스틸렌팬텀)내에서 2개의 전리함 (PTW ion chamber, NEL ion chamber)과 2개의 전기계(Victoreen electrometer, Keithley electrometer)를 사용하여 흡수선량을 측정하였다. 매질, 전리함, 전기계등의 측정 조건을 달리하여 서로 다른 조합에 대한 측정값을 TG21, IAEA 프로토콜에 의해 각각 분석하였다. 결과 및 결론 : 2개의 전기계와 2개의 전리함 조합에 따른 TG2l 및 IAEA 의 Ngas,, ND값의 비는 평균적으로 1% 이내에서 일치하였다. 3개의 서로 다른 매질, 4개의 서로 다른 전리함 및 전기계 조합에 따른 12 가지 측정조건에 대한 흡수선량의 변화는 평균 0.6%의 차이를 보여 주였으며 임의의 전리함 및 전기계 조합에 대하여 물팬텀 및 고체물팬텀에 대한 TG21, MEA 측정법에 의한 흡수선량비의 변화 양상이 같은 양상을 보여주고 있으나 그 차이가 평균 1.96%를 보임으로서 고체물팬텀이 절대 흡수선량 측정에는 적절치 않은 것으로 사료된다. TG21 측정법에 따른 물팬텀과 폴리스틸렌팬텀을 이용한 절대 흡수선량값이 1.54%의 차이를 보임으로서 팬텀 매질에 대한 비교 factor가 필요할 것으로 사료된다. 측정매질, 전리함, 전기계 등의 여러 조건에 대한 흡수선량값의 차이가 TG21, IAEA 프로토콜에서 1% 이내의 차이를 보여 주고 있으며 상대적인 변화 양상이 측정법에 상관없이 같은 경향으로 변함으로서 측정조건이 측정법에 영향을 주지 않았음을 알 수 있다. 다만 표준 측정법을 사용할 때 팬텀에 의한 차이는 많이 날 수 있으므로 측정법에서 사용하는 표준 팬텀을 사용 할 것을 권장하며 이것이 어려운 경우는 병원에서 사용하는 팬텀에 대한 보정값을 자체적으로 구하여 사용하는 것이 오차를 줄일 수 있을 것으로 사료된다.

  • PDF

Evaluations of a Commercial CLEANBOLUS-WHITE for Clinical Application

  • Geum Bong Yu;Jung-in Kim;Jaeman Son
    • 한국의학물리학회지:의학물리
    • /
    • 제35권1호
    • /
    • pp.10-15
    • /
    • 2024
  • Purpose: This study aimed to comprehensively investigate the diverse characteristics of a novel commercial bolus, CLEANBOLUS-WHITE (CBW), to ascertain its suitability for clinical application. Methods: The evaluation of CBW encompassed both physical and biological assessments. Physical parameters such as mass density and shore hardness were measured alongside analyses of element composition. Biological evaluations included assessments for skin irritation and cytotoxicity. Dosimetric properties were examined by calculating surface dose and beam quality using a treatment planning system (TPS). Additionally, doses were measured at maximum and reference depths, and the results were compared with those obtained using a solid water phantom. The effect of air gap on dose measurement was also investigated by comparing measured doses on the RANDO phantom, under the bolus, with doses calculated from the TPS. Results: Biological evaluation confirmed that CBW is non-cytotoxic, nonirritant, and non-sensitizing. The bolus exhibited a mass density of 1.02 g/cm3 and 14 shore 00. Dosimetric evaluations revealed that using the 0.5 cm CBW resulted in less than a 1% difference compared to using the solid water phantom. Furthermore, beam quality calculations in the TPS indicated increased surface dose with the bolus. The air gap effect on dose measurement was deemed negligible, with a difference of approximately 1% between calculated and measured doses, aligning with measurement uncertainty. Conclusions: CBW demonstrates outstanding properties for clinical utilization. The dosimetric evaluation underscores a strong agreement between calculated and measured doses, validating its reliability in both planning and clinical settings.

Therapeutic Proton Beam Range Measurement with EBT3 Film and Comparison with Tool for Particle Simulation

  • Lee, Nuri;Kim, Chankyu;Song, Mi Hee;Lee, Se Byeong
    • 한국의학물리학회지:의학물리
    • /
    • 제30권4호
    • /
    • pp.112-119
    • /
    • 2019
  • Purpose: The advantages of ocular proton therapy are that it spares the optic nerve and delivers the minimal dose to normal surrounding tissues. In this study, it developed a solid eye phantom that enabled us to perform quality assurance (QA) to verify the dose and beam range for passive single scattering proton therapy using a single phantom. For this purpose, a new solid eye phantom with a polymethyl-methacrylate (PMMA) wedge was developed using film dosimetry and an ionization chamber. Methods: The typical beam shape used for eye treatment is approximately 3 cm in diameter and the beam range is below 5 cm. Since proton therapy has a problem with beam range uncertainty due to differences in the stopping power of normal tissue, bone, air, etc, the beam range should be confirmed before treatment. A film can be placed on the slope of the phantom to evaluate the Spread-out Bragg Peak based on the water equivalent thickness value of PMMA on the film. In addition, an ionization chamber (Pin-point, PTW 31014) can be inserted into a hole in the phantom to measure the absolute dose. Results: The eye phantom was used for independent patient-specific QA. The differences in the output and beam range between the measurement and the planned treatment were less than 1.5% and 0.1 cm, respectively. Conclusions: An eye phantom was developed and the performance was successfully validated. The phantom can be employed to verify the output and beam range for ocular proton therapy.

물과 백색폴리스티렌 팬텀에 의한 10 MV X-선 빔 선량계측 (10 MV X-ray Beam Dosimetry by Water and White Polystyrene Phantom)

  • 김종언;차병열;강상식;박지군;신정욱;김소영;조성호;손대웅;최치원;박창희;윤천실;이종덕;박병도
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제31권1호
    • /
    • pp.83-87
    • /
    • 2008
  • 본 연구의 목적은 고체물등가팬텀을 사용하여 절대흡수선량을 측정할 때 물등가깊이에 비례되는 측정값을 보정하기 위한 보정인자를 구하는데 있다. 10MV X-선 빔에 대하여 백색폴리스티렌팬텀과 물팬텀에서 측정의 조건들은 선원 대 전리조 중심까지의 거리를 SAD 100 cm로 고정하였고, 조사면 크기(field size)는 각각 $10{\times}10\;cm^2$, $20{\times}20\;cm^2$를 사용하였으며, 깊이는 각각 2.3 cm, 5 cm, 10 cm, 15 cm를 사용한 것이다. 두 개의 팬텀에 대하여 분당 400 MU의 출력을 갖는 선형가속기로부터 100 MU의 전달로 각각의 조사면 크기와 깊이들에서 3번 측정으로 취득된 전리의 평균값을 측정값으로 얻었다. 이 실험으로부터 보정인자와 TPR에서 퍼센트 편차는 각각 0.97%, 0.53% 이하를 얻었다. 따라서, 고체물등가팬텀을 사용한 절대흡수선량 측정 시에는 보정인자와 TPR에서 퍼센트 편차를 사용하여 보정을 행하면 높은 정확도를 얻을 수 있다.

  • PDF

RW3 고체팬텀에서 고에너지 X-선에 대한 전리함 반응보정인자의 특성에 관한 연구 (Study on the Characteristics of Response Correction Factor of Ionization Chamber in RW3 Solid Phantom for High Energy X-rays)

  • 이정옥;정동혁;김부길
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제32권2호
    • /
    • pp.205-212
    • /
    • 2009
  • 반응보정인자(h)는 고체팬텀에서 전리함의 반응을 물에서의 값으로 변환하기 위한 인자이다. RW3 고체 팬텀의 경우에 고에너지 X-선에 대한 반응보정인자는 선질과 깊이에 의존하는 것으로 알려져 있으나 조사면 크기와 SSD(Source to surface distance), 그리고 전리함 종류에 따른 의존성은 알려진 바가 없다. 본 연구에서는 알려진 의존성을 고찰하고 알려지지 않은 인자들에 대한 의존성을 조사하였다. 본 측정에서는 파머형전리함(FC65G, IBA, Germany)과 소형전리함(CC13, IBA, Germany)이 사용되었으며 대상 선질은 6 MV와 15 MV X-선이었다. 측정 결과 반응보정인자는 6 MV의 경우에 깊이 5 cm와 10 cm에서 각각 h = 1.015, 1.021, 그리고 15 MV의 경우에 깊이 5와 10 cm에서 각각 h = 1.024, 1.029로 나타났다. 결론적으로 반응보정인자는 선질과 깊이에는 의존하였지만 조사면 크기와 SSD에 따른 변화는 적었다. 전리함에 있어서 대상의 두 전리함에 대해서는 차이가 없었으나 다른 종류의 전리함에 대해서 추가적 연구가 필요하다고 생각한다. 본 결과는 RW3에서 전리함을 이용한 측정시 측정값의 분석에 활용될 수 있다.

  • PDF