• 제목/요약/키워드: Solid waste form

검색결과 48건 처리시간 0.03초

종량제 가격이 생활폐기물, 음식물쓰레기, 재활용품 수거서비스 수요에 미치는 영향 (The Impact of Unit Pricing System on the Demand for Solid Waste Disposal, Food Waste Disposal, and Recyclables)

  • 홍성훈
    • 자원ㆍ환경경제연구
    • /
    • 제24권4호
    • /
    • pp.747-761
    • /
    • 2015
  • 본 연구에서는 2006-2013년 기간의 생활폐기물 관련 자료를 사용하여 종량제봉투 가격이 각 처리유형별 생활폐기물의 수거서비스 수요에 미치는 영향을 조사하였다. 생활폐기물 수거서비스 수요에 영향을 미치는 다른 변수들을 통제하고 관찰되지 않는 지역 및 시간적 특성들의 영향을 통제하기 위해 지역 및 시간 고정효과모형으로 각 처리유형별 수거서비스 수요함수를 추정하였다. 추정결과 종량제봉투 가격의 상승은 비탄력적이지만 종량제봉투에 의한 비음식물류 생활폐기물의 수거서비스 수요를 감소시키는 것으로 나타났다. 또한 종량제봉투 가격의 상승은 음식물쓰레기 배출량을 증가하도록 하고 상대적으로 다른 수거서비스 수요에 비해서 재활용품 배출량의 증가에 강하게 영향을 미치는 것으로 나타났다. 이러한 결과는 종량제봉투 가격의 상승에 따른 비음식물류 생활폐기물에 대한 수거서비스 수요의 감소는 음식물쓰레기와 재활용품의 분리수거의 증가에 기인하는 것임을 시사한다. 그러나 종량제봉투 가격의 상승이 1인당 총생활폐기물 발생량을 증가시키는 것으로 나타나고 있어 음식물쓰레기 및 재활용품의 분리배출 증가와 잠재적인 불법투기 및 소각을 고려한 피드백 효과로 인해 생활폐기물의 발생을 원천적으로 감소하도록 하기보다는 오히려 증가하도록 하는 결과를 낳고 있는 것으로 보인다.

비교 위험도 평가 방법의 대기 오염에 대한 적용 연구 (Comparative Risk Assessment Methodology: An Application to Air Pollution)

  • 이진홍
    • 한국대기환경학회지
    • /
    • 제8권2호
    • /
    • pp.100-104
    • /
    • 1992
  • 본 연구는 비교 위험도 평가 기법을 사용하여, 도시 고형 폐기물의 소각에 따른 대기 오염 중 발암성 금속이 호흡기를 통해 소각로 주변 주민에게 미치는 암 위험도를 다옥신과 비교해 평가하였다. 어떤 물질이 인체에 암을 유발할 가능성이 있는 경우, 이 발암성은 물질의 화학적 형태 및 피폭경로에 관련될 지도 모른다. 물질의 발암성에 대한 이러한 사실이 조사되었고 위험도 정량화에 고려되었다. 본 연구 결과, 도시 고형 폐기물의 소각시 방출되는 발암성 금속으로 인한 위험도는 디옥신으로 인한 위험도의 약 5배 정도로 평가되었고, 위험도의 측면에서 가장 중요한 금속은 6가 크롬과 카드뮴인 것으로 판명되었다.

  • PDF

Investigation of Strength Characteristics of Ferrous Slag and Waste Concrete in Water Contacting Environment by Exposure to Raining Events

  • Kim, Byung-Gon;Shin, Hyunjin;Lee, Seunghak;Park, Junboum
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제21권2호
    • /
    • pp.1-7
    • /
    • 2016
  • Ferrous slag is a by-product from steel making process and waste concrete is generated from construction activities. Large part of ferrous slag and waste concrete are recycled as construction materials. However, Ca2+ leaching out of ferrous slag and waste concrete in the water-contacting environment can cause a strength change. Strength can be reduced due to the dissolution of solid form of CaO which is one of the main contents of ferrous slag and waste concrete. On the other hand, strength can be enhanced due to the pozzolanic reaction of cementitious components with water. In this study, steelmaking slag, blast furnace slag, and waste concrete were aged by exposure to raining events, and the change of their compaction and shear strength characteristics was investigated. Optimum moisture content of all materials used in this study increased with aging period while maximum dry unit weight slightly decreased, implying that the relative contents of fine particles increased as the CaO solid particles were dissolved. Internal friction angle and shear strength of recycled materials also increased with aging period, indicating that the materials became denser by the decrease of void ratio attributed to the fine particles generated during the weathering process and the development of cementitious compounds increasing the bonding and interlocking forces between the particles. The results of this study demonstrated that mechanical strength of recycled materials used as construction materials has little chance to be deteriorated during their service life.

중금속으로 오염된 토양 정화에 있어 폐 소뼈 첨가제의 영향 (Stabilization of Heavy Metal Contaminated Soil Amended with Waste Cow Bone)

  • 임정현;최명찬;문덕현;김지형
    • 한국환경과학회지
    • /
    • 제19권2호
    • /
    • pp.255-260
    • /
    • 2010
  • A stabilization/solidification (S/S) process for lead (Pb) contaminated soils was evaluated using waste cow bone containing apatite like compounds. Soil samples obtained form firing range were treated with waste cow bone. The effectiveness of stabilization was evaluated based on the Korean Standard Leaching Test (KSLT) and soil pH. The leached concentration reduced with increased in dose of waste cow bone. Overall, the KSLT results showed that Pb concentration in soils are significantly affected by amount of waste cow bone. When soil amended with 20 % of waste cow bone, less than 0.1 mg/kg was leached, and soil pH was increased from 6.5 to 8.4. Same results were obtained when finer waste cow bone was applied. The reachable concentration of Pb in soil showed in inversely proportional to solid/liquid ratio. Aging periods indicate improving mix design was applied. Relatively high lead concentrations was observed at the first 1 days, however leaching profile are reduced significantly over time for all mix designs.

서울시 일반폐기물의 통합적 관리체계에 관한 연구 (A Study on the Integrated Management System of Municipal Solid Waste from Seoul Metropolitan City)

  • 우세홍;홍상균
    • 한국환경보건학회지
    • /
    • 제19권4호
    • /
    • pp.51-58
    • /
    • 1993
  • The integrated solid waste management for Seoul Metropolitan city can be established on the basis of the following hierarchy of priorities: 1. Efforts for source reduction should be propelled by both government and citizens to achieve the effects of resource conservation. The adequate production and consumption which are environmentally amenable and sustainable can be induced by the reasonable imposition of deposit money for waste treatment to one-time use products. To accomplish source reduction effectively, the induction of legal and institutional regulation of producer and consumer participation is requisite. 2. For resource recovery, wastes generated should be recycled as far as practicable. Community residents are responsible to separate discharge, the authorities concerned have responsibility of separate collection, and recycling industry should be assissted through tax reduction and financing. Resource separation facilities can be constructed at Kimpo Metropolitan landfill site for wastes not separately collected due to some unavoidable circumstances. 3. Garbage should be composted. Garbage is uneconomical for incineration, because it has high moisture content and low calorie, thus there is no reason for the incineration of garbage even though garbage is classified into combustibles. Composting facilities can be located at sites which are not densely populated and easily accessible to transportation, for example, Kimpo Metropolitan landfill site. Compost produced can be managed by the authorities for the use of fertilizer to a green tract of suburban land and farms. 4. Nonhazardous combustible wastes not recyclable can be utilized for thermal recovery at the incinerators which are completely equipped with pollution control devices. According to the trend of local autonomy and the equity principle of local autonomous entities, incineration facilities of minimal capacity required can be constructed at each districts of Seoul Metropolitan city which have organized local assembly. In case of Yangcheon district, the economically combustible waste quantity is about 260 tons/day which exceeds 150 tons/day, the incineration capacity of existing facility. But, from now on, waste quantity can be reduced substantially by the intensive efforts of citizens for source reduction and recycling and the institutional support of administrative organizations. Especially, it is indispensable for the government to constitute institutional and technological bases that can recycle paper and plastics form 43% of waste generated. A good time for constructing of incineration facilities for municipal solid waste can be postponed to the time that pollution control technologies of domestic enterprises are fully developed to satisfy the standards of air pollution prevention, because the life expectancy of Kimpo Metropolitan landfill site is about 25 years. Within this period, institutional improvements and technological advancements can be attained, while the air qual. ity of Seoul Metropolitan city can be ameliorated to the level to afford incineration facilities. 5. For final disposal, incombustibles and ash are landfilled sanitarily at Kimpo Metropolitan landfill site.

  • PDF

농촌지역 쓰레기 매립장 입지선정에 관한 연구 -경상북도 영양군을 사례로- (Solid Waste Disposal Site Selection in Rural Area: Youngyang-Gun, Kyungpook)

  • 박순호
    • 한국지역지리학회지
    • /
    • 제3권1호
    • /
    • pp.63-80
    • /
    • 1997
  • 본 연구의 목적은 쓰레기 매립장의 입지선정 기준을 정립하고, 경상북도 영양군을 사례로 GIS 기법을 이용하여 실제 쓰레기 매립장의 입지후보지를 선정한 다음, 선정된 후보지를 상호비교하여 적정입지의 요인별 특성을 제시하는 것이다. 분석에 사용된 GIS소프트웨어는 Idrisi모듈인 Multi-Criteria Evaluation(MCE)이다. 영양군 쓰레기 매립장 입지선정에 이용된 입지요인은 경사도, 단층선, 기반암과 인구밀집지역, 상수원, 하천, 범람원, 도로 그리고 휴양관광지와의 거리등 9개 요인이다. 입지요인의 표준화와 요인별 가중치를 이용한 적합도와 배제기준을 적응한 결과 쓰레기 매립장 건립 불가지역은 시가지와 그 인접지역, 산악지역, 하천, 간선도로, 휴양관광지 및 그 인접지역으로 전체면적의 85.3%에 해당하는 $695.08km^2$였다. 쓰레기 매립장 적정입지 후보지로는 수비면 신암리, 청기면 행화리와 무진리 그리고 석보면 포산리등 3개지역 총 25개 지점이 선정되었다.

  • PDF

Effect of granite fines on mechanical and microstructure properties of concrete

  • Jain, Kishan Lal;Sancheti, Gaurav
    • Advances in concrete construction
    • /
    • 제13권6호
    • /
    • pp.461-470
    • /
    • 2022
  • Solid waste management is of great concern in today's world. An enormous amount of waste is generated from various industrial activities. Concrete production utilizing some of the potential waste materials will add to the benefit of society. These benefits will include reduction of landfill burden, improved air quality, riverbed protection due to excessive sand excavation, economical concrete production and much more. This study aims to utilize waste granite powder (GP) originating from granite industries as a sand replacement in concrete. Fine GP was collected in the form of slurry from different granite cutting industries. In this study, GP was added in an interval of ten percent as 10%, 20%, 30%, 40% and 50% by weight of sand in concrete. Mechanical assets; compressive strength, flexural strength and splitting tensile strength were prominent for control and blended mixes. Modulus of elasticity (MoE) and abrasion tests were also performed on control and blended specimens of concrete. To provide a comprehensive clarification for enhanced performance of GP prepared concrete samples, scanning electron microscopy (SEM) and X-ray diffraction (XRD) were performed. Results indicate that 30% replacement of sand by weight with GP enhances the mechanical assets of concrete and even the results obtained for 50% replacement are also acceptable. Comprehensive analysis through SEM and XRD for 30% replacement was better than control one. The performance of GP added to concrete in terms of abrasion and modulus of elasticity was far better than the control mix. A significant outcome shows the appropriateness of granite fines to produce sustainable and environmentally friendly concrete.

화강암지역에 고준위 원자력 폐기물 처리에 대한 안정성 평가 (Evaluation of the Safty for the Disposal of High-level Nuclear Waste in the Granite)

  • 오창환
    • 자원환경지질
    • /
    • 제29권2호
    • /
    • pp.215-225
    • /
    • 1996
  • All the radionuclides in high-level nuclear waste will decay to harmless levels eventually but for some radionuclides decay is so slow that their radiation remains dangerous for times on the order of tens or hundreds of thousands of years. At the present time, the most favorite disposal plan for high-level radioactive waste is a mined geological disposal in which canister enclosing stable solid form of radioactive waste is placed in mined cavities locating hundred meters below the surface. The chief hazard in such disposal is dissolution of radionuclides from the waste in the groundwater that will eventually carry the dissolved radionuclides to surface environments. The hazard from possible escape of the radionuclides through groundwater can be delayed by engineered and geologic barriers. The engineered barriers can become useless by unexpected geologic catastrophe such as volcanism, earthquake, and tectonic movement and by fraudulent work such as careless construction, improperly welded canisters within the first few decades or centuries. As a result, dangerously radioactive waste which is still intensively radioactive is directly exposed to attack by moving groundwater. All the more, it is almost impossible to control repositories for times more than 10,000 years. Therefore, naturally controlled geologic, barriers whose properties will not be changed within 10,000 years are important to guarantee the safety of repositories of high-level radioactive waste. In Sweden and France, the suitability of granite for the mined geological disposal of high-level waste has been studied intensively. According to the research in Sweden and France, granites has the following physio-chemical characteristics which can delay the transportation of radionuclide by groundwater. First, the permeabilities of granites decreases as the depth increases and is $10^{-8}{\sim}10^{-12}m/s$ at depth below 300 m. Second, groundwater at depth below 300 m has pH=7-9 and reducing condition (Eh=-0.1~0.4). This geochemical condition is desirable to prevent both canister and solid waste from corrosion. Third most radionuclides are not transported by low solubilities and some radionuclide with high solubility such as Cs and Sr are retarded by absorption of geologic media through which ground water flows. Therefore, if high-level waste is disposed at depth below 300 m in the granite body which has a low permeability and is geologically stable more than 10,000 years, the safety of repositories from the hazard due to radionuclide escape can guaranteed for more than 10,000 years.

  • PDF

양식장 배출수 수질관리를 위한 용존공기부상 공법의 운전 인자 영향 분석 (Analysis of the operating factors of dissolved air flotation (DAF) process for effluent quality improvement from aquaculture rearing tank)

  • 기재홍;김형준;이주영;한무영;강희웅
    • 상하수도학회지
    • /
    • 제26권1호
    • /
    • pp.107-113
    • /
    • 2012
  • Pollutants in aquaculture system effluent mostly originated from solid wastes including uneaten feed and excreta of cultured species. In this research, DAF(Dissolved Air Flotation) unit is suggested as an integrated solid control unit especially as a form of IIBG(Inline Injection Bubble Generation) process in aquaculture system. Solid removal performance of DAF unit was examined under various operation and salinity conditions with turbidity and suspended solid. Solid waste removal efficiencies were found to be affected by operation conditions including saturator pressure, recycle ratio, coagulant concentration. Solid removal efficiency was higher under higher saturator pressure and recycle ratio under which condition larger number of bubbles is generated. Coagulant is thought to have important role in creating bubble-particle aggregate by showing better removal efficiency with higher concentration. However higher saline water showed less effectiveness in removing solids by DAF(IIBG). Application of DAF(IIBG) process also showed additional effect in phosphate removal and DO(Dissolved Oxygen) supply. Phosphate existed in polluted water was removed up to 46% after treatment, which is thought to attribute to aluminium phosphate precipitation. And DO concentration was found to increase over 50% of initial saturation concentration after the injection of micro-bubbles. Through experiments on solid removal from aquaculture effluent, DAF(IIBG) process is estimated to be effective solid control method. This property can help aquaculture system being installed and operated simply and effectively.

산업폐기물의 가속 탄산화법을 이용한 CO2 고용화 및 중금속 안정화 특성 연구 (Stabilization of Heavy Metal and CO2 Sequestration in Industrial Solid Waste Incineration Ash by Accelerated Carbonation)

  • 정성명;남성영;엄남일;서주범;유광석;엄태인;안지환
    • 광물과산업
    • /
    • 제26권
    • /
    • pp.1-12
    • /
    • 2013
  • In this study, an accelerated carbonation process was applied to stabilize hazardous heavy metals of industrial solid waste incineration (ISWI) bottom ash and fly ash, and to reduce $CO_2$ emissions. The most commonly used method to stabilize heavy metals is accelerated carbonation using a high water-to-solid ratio including oxidation and carbonation reactions as well as neutralization of the pH, dissolution, and precipitation and sorption. This process has been recognized as having a significant effect on the leaching of heavy metals in alkaline materials such as ISWI ash. The accelerated carbonation process with $CO_2$ absorption was investigated to confirm the leaching behavior of heavy metals contained in ISWI ash including fly and bottom ash. Only the temperature of the chamber at atmospheric pressure was varied and the $CO_2$ concentration was kept constant at 99% while the water-to-solid ratio (L/S) was set at 0.3 and $3.0dm^3/kg$. In the result, the concentration of leached heavy metals and pH value decreased with increasing carbonation reaction time whereas the bottom ash showed no effect. The mechanism of heavy metal-stabilization is supported by two findings during the carbonation reaction. First, the carbonation reaction is sufficient to decrease the pH and to form an insoluble heavy metal-material that contributes to a reduction of the leaching. Second, the adsorbent compound in the bottom ash controls the leaching of heavy metals; the calcite formed by the carbonation reaction has high affinity of heavy metals. In addition, approximately 5 kg/ton and 27 kg/ton $CO_2$ were sequestrated in ISWI bottom ash and fly ash after the carbonation reaction, respectively.

  • PDF