• Title/Summary/Keyword: Solid surface

Search Result 2,428, Processing Time 0.03 seconds

Effect of Grain Size on the Physicochemical Properties of Rice Porridge (쌀 입자크기가 흰쌀죽의 이화학적 특성에 미치는 영향)

  • Yang, Yun-Hyoung;Oh, Sang-Hee;Kim, Mee-Ree
    • Korean journal of food and cookery science
    • /
    • v.23 no.3 s.99
    • /
    • pp.314-320
    • /
    • 2007
  • The objective of this study was to investigate the effect of grain size on the physicochemical properties of rice porridge. Here, the grain size of the rice was classified as whole grain, half grain, and flour by traditional Korean cooking methods. The viscosity of the rice flour porridge was highest for the among the three different grain size porridges. In the amylographs, the increase in viscosity for the whole grain porridge was higher than that of the rice flour porridge during cooling. The soluble solid and reducing sugar contents of the rice porridges increased according to the rice grain size, while the blue value decreased. The SDI (starch digestion index) increased according to the rice grain size. The RDS (rapidly digestible starch) was highest while the SDS (slowly digestible starch) the lowest in the rice flour porridge. The morphologies of the rice porridges were examined by SEM and showed a smoother surface and more exudated gelatinized granules in the rice flour than in the whole grain rice porridge. In conclusion, rice porridges made from the smallest possible grain size such as flour may be helpful for people with weaker digestive systems such as infants, the elderly, and hospital patients.

Oxygen Reduction Mechanism and Electrode Properties of (La,Sr)$MnO_3$-YSZ Composite Cathode for Solid Oxide Fuel Cell (Part I: Oxygen Reduction Mechanism) (고체산화물 연료전지용 (La,Sr)$MnO_3$-YSZ 복합체 양극의 산소환원 반응기구 및 전극 특성 (Part I: 산소환원 반응기구))

  • 김재동;김구대;이기태
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.1
    • /
    • pp.84-92
    • /
    • 2001
  • (La,Sr)MnO$_3$(LSM)-YSZ 복합체 양극의 산소환원 반응기구에 대해 고찰하였다. YSZ를 첨가함에 따라 복합체 양극의 ohmic 저항이 증가하고, 분극 저항은 YSZ를 40 wt%~50 wt% 혼합하였을 때 최소값을 나타내었다. 또한 LSM-YSZ 복합체 양극의 산소환원 반응기구는 1가 산소이온의 표면확산과 산소이온전달반응에 의해서 지배됨을 알 수 있었다. 임피던스 분석 결과에 따르면 고주파수 영역에서 나타나는 반원은 산소이온전달반응으로 산소분압 의존성이 거의 없고, YSZ가 40 wt% 첨가되었을 때 최소값을 나타내었다. 중간주파수 영역에서 나타나는 반원은 1가 산소이온의 표면확산반응으로 산소분압 의존성은 약 1/4이고, YSZ가 40~50 wt% 첨가되었을 때 최소값을 나타냈다. 한편, 저주파수 영역에 나타나는 반원은 가스확산반응으로 산소분압 의존성이 1이고, 온도에 따른 의존성이 거의 없었다.

  • PDF

Oxygen Reduction Mechanism and Electrode Properties of (La,Sr)$MnO_3$-YSZ Composite Cathode for Solid Oxide Fuel Cell (Part II: Electrode Properties) (고체산화물 연료전지용 (La,Sr)$MnO_3$-YSZ 복합체 양극의 산소환원 반응기구 및 전극 특성 (Part II: 전극 특성))

  • 김재동;김구대;이기태
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.1
    • /
    • pp.93-99
    • /
    • 2001
  • (La,Sr)MnO$_3$(LSM)-YSZ 복합체 양극에 있어서 소결온도 및 전극두께와 cathodic potential이 전극 특성에 미치는 영향을 고찰하였다. 양극의 소결은 삼상계면의 양을 결정하는 중요한 변수로 LSM 단미 양극과 YSZ가 40 wt% 포함된 LSM-YSZ 복합체 양극 모두 120$0^{\circ}C$에 소결했을 때 가장 낮은 분극저항을 나타내었다. 또한 양극 후막의 두께가 얇아지면 양극의 in-plane 저항이 증가하여 ohmic 저항이 증가하였는데, LSM-YSZ 복합체 양극의 경우 약 30$mu extrm{m}$ 정도의 전극두께가 가장 효과적인 전극 특성을 나타내었다. 한편, LSM-YSZ 복합체 양극에 -0.5 V의 cathodic potential을 인가함에 따라 양극에서 일어나는 산소환원반응의 활성이 증가하였는데, 1가 산소이온의 표면확산반응의 분극저항은 감소하였으나, 고주파수 영역에서 나타나는 산소이온전달반응의 저항은 거의 변화하지 않았다. 이것은 Mn의 환원에 의한 양극표면에 생성된 산소공공에 기인한다.

  • PDF

Change of Hydriding Properties of Gravity Cast Mg-Ni Alloys with Ni Content (Ni 첨가량에 따른 중력 주조 Mg-Ni 합금의 수소화 반응 특성의 변화)

  • Yim, C.D.;Moon, Y.M.;You, B.S.;Na, Yeong-Sang;Bae, Jong-Su
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.15 no.3
    • /
    • pp.250-256
    • /
    • 2004
  • Magnesium and its alloys have the high potential as hydrogen storage materials because of their highest hydrogen storage capacity, low density and abundant resources. But poor kinetic properties of hydriding and dehydriding and high working temperature have limited their practical applications. In this study, the Mg-Ni binary alloys with different amount of Ni were produced by gravity casting and characterized in order to investigate the relationship between the microstructures and hydriding properties. The maximum hydrogen absorption capacity decreased, but the absorption kinetics increased with Ni content. The difference in the absorption kinetics was resulted from the differences in the sort and shape of primary solid phases and eutectic microstructure.

Temperature and Leakage Current Characteristics of Polymeric Surge Arrester with Housing (폴리머 피뢰기의 구조에 따른 온도와 누설전류 특성)

  • Cho, Han-Goo;You, Dae-Hoon;Lee, Un-Yong;Kim, Ha-Na
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.3
    • /
    • pp.273-280
    • /
    • 2007
  • In this paper, the ZnO surge arrester performance of power distribution class has been studied under different manufacturing conditions such as housing materials(polymeric, porcelain), interface sealants and one-body molding type. In the recent years, the polymeric ZnO surge arresters have been developed and put into operations based on their excellent characteristics. For polymeric surge arresters, the inner gas volume is extremely small, especially in solid insulation polymeric arresters there are not any gas volume inside arresters in the structure due to polymeric materials are filled into the internal gas volume. The sealing integrity is related to safe operation of surge arrester, the prime failure reason of porcelain housed arresters is moisture ingress. In this paper, the sealing integrity of polymeric surge arresters is investigated with moisture multi-aging test and ingress test. The evaluation techniques are used to inspect the sealing integrity of polymeric arresters, including leakage current, surface temperature, reference voltage and dissipation factor.

NUMERICAL STUDY OF WEDGE FLOW IN RAREFIED GAS FLOW REGIME USING A SLIP BOUNDARY CONDITION (희박기체 영역에서 미끄럼 경계조건을 적용한 쐐기 형상 주위의 유동 해석)

  • Choi, Y.J.;Kwon, O.J.
    • Journal of computational fluids engineering
    • /
    • v.19 no.2
    • /
    • pp.40-48
    • /
    • 2014
  • For rarefied gas flow regimes, physical phenomena such as velocity slip and temperature jump occur on the solid body surface. To predict these phenomena accurately, either the Navier-Stokes solver with a slip boundary condition or the direct simulation Monte Carlo method should be used. In the present study, flow simulations of a wedge were conducted in Mach-10 flow of argon gas for several different flow regimes using a two-dimensional Navier-Stokes solver with the Maxwell slip boundary condition. The results of the simulations were compared with those of the direct simulation Monte Carlo method to assess the present method. It was found that the values of the velocity slip and the temperature jump predicted increase as the Knudsen number increases. Also, the results are comparatively reasonable up to the Knudsen number of 0.05.

Ultrasonic Image of the Side Drilled Holes in SS Reference Block as Combining Bases of Support for Spatial Frequency Response

  • Koo, Kil-Mo;Song, Chul-Hwa;Beak, Won-Pil;Kang, Hee-Young
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.322-326
    • /
    • 2008
  • In this paper, we have studied the images which have been reconstructed by using combination of images acquired by the variation of operating frequency. When inner images have been reconstructed, they have been superposed by the surface state effect. In this case, the images of the phase object can be enhanced by the contrast of inner images. There is a kind of specimen, one is a reference block having 1/4T, 1/2T, 3/4T side drilled holes as main run piping material of the steam generator in nuclear power plants. It has been shown that the two results of defect shapes have better than before in this processing and phase contrast grow about twice. And we have constructed the acoustic microscope by using a quadrature detector that enables to acquire the amplitude and phase of the reflected signal simultaneously. Further more we have studied the reconstruction method of the amplitude and phase images, the enhancement method of the defect images' contrast.

  • PDF

Transcortical Endoscopic Surgery for Intraventricular Lesions

  • Kim, Myung-Hyun
    • Journal of Korean Neurosurgical Society
    • /
    • v.60 no.3
    • /
    • pp.327-334
    • /
    • 2017
  • To review recent advances in endoscopic techniques for treating intraventricular lesions via transcortical passage. Articles in PubMed published since 2000 were searched using the keywords 'endoscopy,' 'endoscopic,' and 'neuroendoscopic.' Of these articles, those describing intraventricular lesions were reviewed. Suprasellar arachnoid cysts (SACs) can be treated with ventriculo-cystostomy (VC) or ventriculo-cysto-cisternostomy (VCC). VCC showed better results compared to VC. Procedure type, fenestration size, stent placement, and aqueductal patency may affect SAC prognosis. Colloid cysts can be managed using a transforaminal approach (TA) or a transforaminal-transchoroidal approach (TTA). However, TTA may result in better exposure compared to TA. Intraventricular cysticercosis can be cured with an endoscopic procedure alone, but if pericystic inflammation and/or ependymal reaction are seen, third ventriculostomy may be recommended. Tumor biopsies have yielded successful diagnosis rates of up to 100%, but tumor location, total specimen size, endoscope type, and vigorous coagulation on the tumor surface may affect diagnostic accuracy. An ideal indication for tumor excision is a small tumor with friable consistency and little vascularity. Tumor size, composition, and vascularity may influence a complete resection. SACs and intraventricular cysticercosis can be treated successfully using endoscopic procedures. Endoscopic procedures may represent an alternative to surgical options for colloid cyst removal. Solid tumors can be safely biopsied using endoscopic techniques, but endoscopy for tumor resection still results in considerable challenges.

An Experimental Study on Shape Oscillation Mode of a Pendant Droplet by an Acoustic Wave (음향 가진을 이용한 매달려 있는 액적의 형상 진동 모드에 관한 실험적 연구)

  • Kang Byung-Ha;Moon Jong-Hoon;Kim Ho-Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.6 s.249
    • /
    • pp.523-530
    • /
    • 2006
  • One of the fascinating prospects is the possibility of new hydrodynamics technology on micro-scale system since oscillations of micro-droplets are of practical and scientific importance. It has been widely conceived that the lowest oscillation mode of a pendant droplet is the longitudinal vibration, i.e. periodic elongation and contraction along the longitudinal direction. Nonlinear and forced oscillations of supported viscous droplet were focused in the present study. The droplet has a free contact line with solid plate and inviscid fluid. Natural frequencies of a pendant droplet have been investigated experimentally by imposing the acoustic wave while the frequency is being increased at a fixed amplitude. It is found that a pendant droplet shows the resonant behaviors at each mode similar to the theoretical analysis. The rotation of the droplet about the longitudinal axis is the oscillation mode of the lowest resonance frequency. This rotational mode can be invoked by periodic acoustic forcing and is analogous to the pendulum rotation. It is also found that the natural frequency of a pendant droplet is independent of the drop density and surface tension but inversely proportional to the square root of the droplet size.

A Study on the Tolerance Modeler for Feature-based CAPP (특징형상에 기반한 자동공정설계용 공차 모델러 연구)

  • Kim, Jae-Gwan;No, Hyeong-Min;Lee, Su-Hong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.1
    • /
    • pp.48-54
    • /
    • 2002
  • A part definition must not only provide shape information of a nominal part but also contain non-shape information such as tolerances, surface roughness and material specifications. Although machining features are useful for suitable shape information fur process reasoning in CAPP, they need to be integrated with tolerance information for effective process planning. We develop a tolerance modeler that efficiently integrates the machining features with the tolerance information fur feature-based CAPP. It is based on the association of machining features, tolerance features, and tolerances. The tolerance features in this study, where tolerances are assigned, are classified into two types; one type is a face that is a topological entity on a solid model and the other type is a functional geometry that is not referenced to topological entities. The (unctional geometry is represented by using machining features. All the data fur representing the tolerance information are stored completely and unambiguously in an independent tolerance data structure. The developed tolerance modeler is implemented as a module of a comprehensive feature-based CAPP system.