• 제목/요약/키워드: Solid support

검색결과 356건 처리시간 0.023초

산화성고체-조연제 혼합물의 연소성에 관한 연구 (A Study on Combustion Property of Oxidizing Solid-Combustible Support Mixtures)

  • 송영호;강민호;정국삼
    • 한국안전학회지
    • /
    • 제18권1호
    • /
    • pp.71-75
    • /
    • 2003
  • The purpose of this study was to review the factors that influence on the combustion experiment of oxidizing solid such as mixing ratio of oxidizing solid and combustible support content ratio of oxidizing solid, ambient temperature, maturing time, combustible support, and additives. The 30g mixing compound samples of oxidizing solid and combustible support were tested with different mixing ratios. As a result, the Infest burning time was measured when mixing ratio was 4 (oxidizing solid) : 1 (combustible support). And the burning time was decreasing as the ambient temperature and maturing time were increasing.

A Novel Route to New Bis(benzopyrano) Fused Dihydropyridines Using Dry Media

  • Kidwai, Mazaahir;Rastogi, Shweta;Mohan, Richa
    • Bulletin of the Korean Chemical Society
    • /
    • 제25권1호
    • /
    • pp.119-121
    • /
    • 2004
  • A new and efficient synthesis of the novel bioactive bis(benzopyrano) fused dihydropyridines is described. The conventionally developed route is a two step multicomponent condensation reaction. This is latter modified by a one pot microwave (MW) assisted reaction using inorganic solid support via the arylidene derivative intermediate. With this environmentally benign approach, the reaction time is brought down from hours to minutes along with a yield enhancement. Furthermore, the role of different solid supports is studied and it is concluded that the acidic alumina is the best solid support for the present investigation.

신구조 금속지지체형 고체산화물 연료전지 (Study on metal-supported solid oxide fuel cells)

  • 이창보;배중면
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 춘계학술대회
    • /
    • pp.129-132
    • /
    • 2007
  • Advanced structure of metal-supported solid oxide fuel cells was devised to overcome sealing problem and mechanical instability in ceramic-supported solid oxide fuel cells. STS430 whose dimensions were 26mm diameter, 1mm thickness and 0.4mm channel width was used as metal support. Thin ceramic layer composed of anode(Ni/YSZ) and electrolyte(YSZ) was joined with STS430 metal support by using a cermet adhesive. $La_{0.8}Sr_{0.2}Co_{0.4}Mn_{0.6}O_{3}$ perovskite oxide was used as cathode material. It was noted that oxygen reduction reaction of cathode governed the overall cell performance from oxygen partial pressure dependance.

  • PDF

동체 내삽형 추진기관 연결장치 연구 (Research on the Rocket Motor Support Structure Inserted inside the Missile Fuselage)

  • 박경민
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2010년도 제35회 추계학술대회논문집
    • /
    • pp.265-270
    • /
    • 2010
  • 본 연구에서는 유도무기 동체 내에 고체 추진기관을 삽입하여 장착할 경우 적용할 수 있는 연결장치와 조립체 개념을 제안하였다. 유도탄 동체 내에 추진기관을 삽입하여 장착하는 경우는 동체가 비행중 받는 하중에 더하여 추진기관의 연소에 의해 야기되는 여러 가지 효과 즉, 추력에 의한 축하중, 진동, 연소 중 발생하는 추진기관의 축방향 변형 등을 견디는 구조여야 한다. 본 연구에서 제안된 추진기관 연결장치를 통해 간결하면서도 설계 요구조건을 모두 만족하는 추진기관 장착 시스템을 구성할 수 있었다.

  • PDF

Combinatorial Solid Phase Peptide Synthesis and Bioassays

  • Shin, Dong-Sik;Kim, Do-Hyun;Chung, Woo-Jae;Lee, Yoon-Sik
    • BMB Reports
    • /
    • 제38권5호
    • /
    • pp.517-525
    • /
    • 2005
  • Solid phase peptide synthesis method, which was introduced by Merrifield in 1963, has spawned the concept of combinatorial chemistry. In this review, we summarize the present technologies of solid phase peptide synthesis (SPPS) that are related to combinatorial chemistry. The conventional methods of peptide library synthesis on polymer support are parallel synthesis, split and mix synthesis and reagent mixture synthesis. Combining surface chemistry with the recent technology of microelectronic semiconductor fabrication system, the peptide microarray synthesis methods on a planar solid support are developed, which leads to spatially addressable peptide library. There are two kinds of peptide microarray synthesis methodologies: pre-synthesized peptide immobilization onto a glass or membrane substrate and in situ peptide synthesis by a photolithography or the SPOT method. This review also discusses the application of peptide libraries for high-throughput bioassays, for example, peptide ligand screening for antibody or cell signaling, enzyme substrate and inhibitor screening as well as other applications.

솔리드 모델 변환과 특징형상인식을 위한 기하 추론 (3D Geometric Reasoning for Solid Model Conversion and Feature Recognition)

  • 한정현
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제3권2호
    • /
    • pp.77-84
    • /
    • 1997
  • 3차원 물체를 표현하는 솔리드 모델링 기법으로 Constructive Solid Geometry(CSG)와 경계표현 (Boundary Representation: BRep)이 널리 쓰이고 있다. 현대의 솔리드 모델링 시스템들은 대개 이 두 기법을 모두 지원하고 있으며, CSG와 BRep간 상호 변환은 매우 중요한 문제이다. 하지만, BRep에서 CSG로의 변환은 아직 완전히 해결되지 않은 과제이다. 이 논문은 BRep을 CSG의 특수한 형태인 Destructive Solid Geometry(DSG)로 변환하는 3차원 기하 추론 알고리즘을 소개한다. BRep에서 DSG를 만들어내는 알고리즘은 CAD와 CAM을 통합시키는 특정 형상 인식 분야에 직접 응용될 수 있다.

  • PDF

Preparation of Oligonucleotide Arrays with High-Density DNA Deposition and High Hybridization Efficiency

  • Park, Jeong-Won;Jung, Yong-Won;Jung, Young-Hwan;Seo, Jeong-Sun;Lee, Young-Hoon
    • Bulletin of the Korean Chemical Society
    • /
    • 제25권11호
    • /
    • pp.1667-1670
    • /
    • 2004
  • In DNA microarray produced by DNA-deposition technology, DNA-immobilization and -hybridization yields on a solid support are most important factors for its accuracy and sensitivity. We have developed a dendrimeric support using silylated aldehyde slides and polyamidoamine (PAMAM) dendrimers. An oligonucleotide array was prepared through a crosslinking between the dendrimeric support and an oligonucleotide. Both DNAimmobilization and -hybridization yields on the solid support increased by the modification with the dendrimers. The increase of the immobilization and hybridization efficiency seems to result from a threedimensional arrangement of the attached oligonucleotide. Therefore, our dendrimeric support may provide a simple and efficient solution to the preparation of DNA microarrays with high-density DNA-deposition and high hybridization efficiency.