• Title/Summary/Keyword: Solid state processes

Search Result 131, Processing Time 0.026 seconds

Numerical simulation of nonlinear strains of constructions elements

  • Askhad M. Polatov;Akhmat M. Ikramov;Sukhbatulla I. Pulatov
    • Advances in Computational Design
    • /
    • v.9 no.2
    • /
    • pp.137-150
    • /
    • 2024
  • Paper shows the problems of numerical modeling of nonlinear physical processes of elements stress-strain state of construction are considered. Elastic-plastic environment of homogeneous solid material is investigated. The results of computational experiments of physically nonlinear strain process study of isotropic elements of three-dimensional constructions with a system of one - and doubly periodic spherical cavities under uniaxial compression are presented. The effect and mutual influence of stress concentrators in the form of a spherical cavities, vertically located two cavities and a horizontally located system of two cavities on the strain of construction is studied.

Detecting of Scuffing Faliure using Acoustic Emission (AE센서를 이용한 스커핑 손상의 감시)

  • Kim, Jae-Hwan;Kim, Tae-Wan;Cho, Yong-Joo
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.34-39
    • /
    • 2002
  • The surfaces of machine components in sliding contact such as bearing, gears and pistons etc. frequently operate under the condition of mixed lubrication due to high load, high speed and slip. These machine components often undergo the inception of scuffing in practical application. The scuffing failure is a critical problem in modern machine components, especially for the requirement of high efficiency and small size. However, it is difficult to find a universal mechanism to explain all scuffing phenomena because there are so many factors affecting the onset of scuffing. In this study, scuffing experiments are conducted using Acoustic Emission(AE) measurement by an indirect sensing approach to detect scuffing failure. Acoustic Emission(AE) signal has been widely utilized to monitor the interaction at the friction interface. Using AE signals we can get an indication about the state of the friction processes, about the quality of solid and liquid layers eon the contacting surfaces in real time. The FFT(Fast Fourier Transform)analyses of the AE signal are used to understand the interfacial interaction and the relationship between the AE signal and the state of contact is presented

  • PDF

Detecting of Scuffing Failure Using Acoustic Emission (AE 센서를 이용한 스커핑 손상의 감시)

  • Cho, Yong-Joo;Kim, Jae-Hwan;Kim, Tae-Wan;Cho, Yong-Joo
    • Tribology and Lubricants
    • /
    • v.18 no.5
    • /
    • pp.351-356
    • /
    • 2002
  • The surfaces of machine components in sliding contact such as bearing, gears and pistons etc. frequently operate under the condition of mixed lubrication due to high load, high speed and slip. These machine components often undergo the inception of scuffing in practical application. The scuffing failure is a critical problem in modern machine components, especially for the requirement of high efficiency and small size. However, it is difficult to find a universal mechanism to explain all scuffing phenomena because there are so many factors affecting the onset of scuffing. In this study, scuffing experiments are conducted using Acoustic Emission(AE) measurement by an indirect sensing approach to detect scuffing failure. Acoustic Emission(AE) signal has been widely utilized to monitor the interaction at the friction interface. Using AE signals we can get an indication about the state of the friction processes, about the quality of solid and liquid layers on the contacting surfaces in real time. The FFT(Fast Fourier Transform) analyses of the AE signal are sued to understand the interfacial interaction and the relationship between the AE signal and the state of contact is presented.

Single Bubble Dynamic Behavior in AL2O3/H2O Nanofluid on Downward-Facing Heating Surface

  • Wang, Yun;Wu, Junmei
    • Nuclear Engineering and Technology
    • /
    • v.48 no.4
    • /
    • pp.915-924
    • /
    • 2016
  • After a severe accident to the nuclear reactor, the in-vessel retention strategy is a key way to prevent the leakage of radioactive material. Nanofluid is a steady suspension used to improve heat-transfer characteristics of working fluids, formed by adding solid particles with diameters below 100nm to the base fluids, and its thermal physical properties and heat-transfer characteristics are much different from the conventional working fluids. Thus, nanofluids with appropriate nanoparticle type and volume concentration can enhance the heat-transfer process. In this study, the moving particle semi-implicit method-meshless advection using flow-directional local grid method is used to simulate the bubble growth, departure, and sliding on the downward-facing heating surface in pure water and nanofluid (1.0 vol.% $Al_2O_3/H_2O$) flow boiling processes; additionally, the bubble critical departure angle and sliding characteristics and their influence are also investigated. The results indicate that the bubble in nanofluid departs from the heating surface more easily and the critical departure inclined angle of nanofluid is greater than that of pure water. In addition, the influence of nanofluid on bubble sliding is not significant compared with pure water.

Numerical Modelling of Temperature Distribution and Pressure Drop through the Layered Burden Loading in a Blast Furnace

  • Yang, Kwang-Heok;Choi, Sang-Min;Chung, Jin-Kyung
    • Journal of the Korean Society of Combustion
    • /
    • v.14 no.4
    • /
    • pp.1-6
    • /
    • 2009
  • Analysis of the internal state of the blast furnace is necessary to predict and to control the operating conditions. Especially, it is important to develop models of the blast furnace to predict the cohesive zone because shape of the cohesive zone influences overall operating conditions of blast furnace such as gas flow, chemical reactions and temperature. Because many previous blast furnace models have assumed cohesive zone to be fixed, it was not possible to evaluate the shape change of cohesive zone in relation with operating conditions such as PCR, blast condition, and production rate. In this study, an axi-symmetric 2-dimensional steady state model is proposed to simulate blast furnace processes. In this model, cohesive zone is determined by the solid temperature. Finite volume method is employed for numerical simulation. To find location of the cohesive zone, entire calculation procedure is iterated until converged. Through this approach, shape of the cohesive zone, velocity and temperature within the furnace are predicted from the model.

  • PDF

Effects of Polymerization and Spinning Conditions on Mechanical Properties of PAN Precursor Fibers

  • Qin, Qi-Feng;Dai, Yong-Qiang;Yi, Kai;Zhang, Li;Ryu, Seung-Kon;Jin, Ri-Guang
    • Carbon letters
    • /
    • v.11 no.3
    • /
    • pp.176-183
    • /
    • 2010
  • PAN precursor fibers were produced via wet-spinning process, and effects of polymerization and spinning processes, especially the stretching process, were investigated on mechanical properties and micro-morphologies of precursor fibers. An increase in molecular weight, dope solid and densification and a decrease in surface defects were possible by controlling polymerization temperature, the number of heating rollers for densification and the jet stretch ratio, which improved the mechanical properties of precursor fibers. The curves for strength, modulus, tensile power and diameter as a function of stretch ratio can be divided into three stages: steady change area, little change area and sudden change area. With the increase of stretch ratio, the fiber diameter became smaller, the degree of crystallization increased and the structure of precursor fibers became compact and homogeneous, which resulted in the increase of strength, modulus and tensile power of precursor fibers. Empirical relationship between fiber strength and stretch ratio was studied by using the sub-cluster statistical theory. It was successfully predicted when the strengths were 0.8 GPa and 1.0 GPa under a certain technical condition, the corresponding stretch ratio of the fiber were 11.16 and 12.83 respectively.

Microstructural evolution of primary solid particles and mechanical properties of AI-Si alloys by rheocasting (AI-Si계 리오캐스팅합금의 초정입자의 응고조직 및 기계적성질)

  • Lee, J.I.;Lee, H.I.;Ryoo, Y.H.;Kim, D.H.;Kim, M.I.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.7 no.4
    • /
    • pp.244-252
    • /
    • 1994
  • The morphological changes of primary solid particles as a fuction of process time on Al-Si alloys during semi-solid state processing with a shear rate of 200s were studied. In hypereutectic Al-15.5wt%Si alloy, it was observed that primary Si crystals are fragmented in the early stage of stirring and morphologies of primary Si crystals change from faceted to spherical during isothermal shearing for 60 minutes. In quaternary Al-12.5wt%Si-2.9wt%Cu-0.7wt%Mg alloy system, it was observed both primary silicon and ${\alpha}$-alumunum particles. Microstructural evolution of primary Si crystals was similar to that of the hypereutectic Al-Si alloy but equiaxed ${\alpha}$-Al dendrites are broken into nearly spherical at the early stage of shearing and later stage of the isothermal shearing ${\alpha}$- Al particles are slightly coarsoned by Ostwald ripening. Mechanical properties of Al-Si-Cu-Mg alloy were compared to those from other processes (squeeze casting and gravity casting). After T6 heat treatment, comparable values of hardness were obtained while slightly lower compressive strength values were observed in rheocast alloy. The elongation, on the other hand, exhibited significant increasement of 15% over gravity cast alloy.

  • PDF

Carbothermal Reduction of Spray Dried Titanium-Cobalt-Oxygen Based Oxide Powder by Solid Carbon (분무건조법에 의해 제조된 Ti-Co-O계 산화물 분말의 고체 탄소에 의한 환원/침탄)

  • 이길근;문창민;김병기
    • Journal of Powder Materials
    • /
    • v.11 no.1
    • /
    • pp.28-33
    • /
    • 2004
  • In the present study, the focus is on the analysis of carbothermal reduction of the titanium-cobalt-oxygen based oxide powder by solid carbon for the optimizing synthesis process of ultra fined TiC/Co composite powder. The titanium-cobalt-oxygen based oxide powder was prepared by the combination of the spray drying and desalting processes using the titanium dioxide powder and cobalt nitrate as the raw materials. The titanium-cobalt-oxygen based oxide powder was mixed with carbon black, and then this mixture was carbothermally reduced under a flowing argon atmosphere. The changes in the phase structure and thermal gravity of the mixture during carbothermal reduction were analysed using XRD and TGA. The synthesized titanium-cobalt-oxygen based oxide powder has a mixture of $TiO_2$ and $CoTiO_3$. This oxide powder was transformed to a mixed state of titanium car-bide and cobalt by solid carbon through four steps of carbothermal reduction steps with increasing temperature; reduction of $CoTiO_3$ to $TiO_2$ and Co, reduction of $TiO_2$, to the magneli phase($Ti_nO_{2n-1}$, n>3), reduction of the mag-neli phase($Ti_nO_{2n-1}$, n>3) to the $Ti_nO_{2n-1}$(2$\leq$n$\leq$3) phases, and reduction and carburization of the $Ti_nO_{2n-1}$(2$\leq$n$\leq$3) phases to titanium carbide.

The Fabrication of Porous Nickel Oxide Thin Film using Anodization Process for an Electrochromic Device

  • Lee, Won-Chang;Choe, Eun-Chang;Hong, Byeong-Yu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.407.1-407.1
    • /
    • 2016
  • Electrochromism is defined as a phenomenon which involves persistently repeated change of optical properties between bleached state and colored state by simultaneous injection of electrons and ions, sufficient to induce an electrochemical redox process. Due to this feature, considerable progress has been made in the synthesis of electrochromic (EC) materials, improvements of EC properties in EC devices such as light shutter, smart window and variable reflectance mirrors etc. Among the variable EC materials, solid-state inorganics in particular, metal oxide semiconducting materials such as nickel oxide (NiO) have been investigated extensively. The NiO that is an anodic EC material is of special interest because of high color contrast ratio, large dynamic range and low material cost. The high performance EC devices should present the use of standard industrial production techniques to produce films with high coloration efficiency, rapid switching speed and robust reversibility. Generally, the color contrast and the optical switching speed increase drastically if high surface area is used. The structure of porous thin film provides a specific surface area and can facilitate a very short response time of the reaction between the surface and ions. The large variety of methods has been used to prepare the porous NiO thin films such as sol-gel process, chemical bath deposition and sputtering. Few studies have been reported on NiO thin films made by using sol-gel method. However, compared with dry process, wet processes that have the questions of the durability and the vestige of bleached state color limit the thin films practical use, especially when prepared by sol-gel method. In this study, we synthesis the porous NiO thin films on the fluorine doped tin oxide (FTO) glass by using sputtering and anodizing method. Also we compared electrical and optical properties of NiO thin films prepared by sol gel. The porous structure is promised to be helpful to the properties enhancement of the EC devices.

  • PDF

A Solid-State NMR Study of Coordination Transformation in Amorphous Aluminum Oxide: Implication for Crystallization of Magma Ocean (고상 NMR을 이용한 비정질 알루미나의 상전이 연구: 마그마 바다 구성 용융체의 결정화 과정의 의의)

  • Ryu, Saebom;Lee, Sung Keun
    • Journal of the Mineralogical Society of Korea
    • /
    • v.25 no.4
    • /
    • pp.283-293
    • /
    • 2012
  • In order to have better insights into the chemical differentiation of Earth from its magma ocean phase to the current stratified structure, detailed information of crystallization kinetics of silicate melts consisting of the magma ocean is essential. The structural transitions in oxide glasses and melts upon crystallization provide improved prospects for a systematic and quantitative understanding of the crystallization processes. Here, we report the $^{27}Al$ 3QMAS NMR spectra for sol-gel synthesized $Al_2O_3$ glass with varying temperature and annealing time. The NMR spectra for the amorphous $Al_2O_3$ show well-resolved Al coordination environments, characterized with mostly $^{[4,5]}Al$ and a minor fraction of $^{[6]}Al$. The fraction of $^{[5]}Al$ in the alumina phase decreases with increasing annealing time at constant temperature. The NMR results of $Al_2O_3$ phases also imply that multiple processes (e.g., crystallization and/or changes in structural disorder within glasses) could involve upon its phase transition. The current results and method can be useful to understand crystallization kinetics of diverse natural and multi-component silicate glasses and melts. The potential result may yield atomic-level understanding of Earth's chemical evolution and differentiation from the magma ocean.