• Title/Summary/Keyword: Solid state Light

Search Result 217, Processing Time 0.028 seconds

Organic Light-Emitting Diodes Fabricated from $Alq_3$ in Different Crystalline Polymorphs

  • Kaji, Hironori;Fukushima, Tatsuya
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.185-188
    • /
    • 2008
  • We have analyzed the structures of $Alq_3$ in different polymorphs by solid-state NMR. On the basis of the results, OLEDs were fabricated from different polymorphs of $Alq_3$. The current efficiency of the device fabricated from the mixture of $\alpha$-, $\gamma$-, and $\delta-Alq_3$ powders was higher than that from $\alpha-Alq_3$.

  • PDF

Modeling Green-light Fiber Amplifiers for Visible-light Communication Systems

  • Khushik, Muhammad Hanif Ahmed Khan;Jiang, Chun
    • Current Optics and Photonics
    • /
    • v.3 no.2
    • /
    • pp.105-110
    • /
    • 2019
  • The visible-light communication (VLC) system is a promising candidate to fulfill the present and future demands for a high-speed, cost-effective, and larger-bandwidth communication system. VLC modulates the visible-light signals from solid-state LEDs to transmit data between transmitter and receiver, but the broadcasting and the line-of-sight propagation nature of visible-light signals make VLC a communication system with a limited operating range. We present a novel architecture to increase the operating range of VLC. In our proposed architecture, we guide the visible-light signals through the fiber and amplify the dissipated signals using visible-light fiber amplifiers (VLFAs), which are the most important and the novel devices needed for the proposed architecture of the VLC. Therefore, we design, analyze, and apply a VLFA to VLC, to overcome the inherent drawbacks of VLC. Numerical results show that under given constant conditions, the VLFA can amplify the signal up to 35.0 dB. We have analyzed the effects of fiber length, active ion concentration, pump power, and input signal power on the gain and the noise figure (NF).

Research Trend of Quantum Light Source for Quantum Information Technology (양자 정보 기술을 위한 양자 광원 연구 동향)

  • Ko, Y.H.;Kim, K.J.;Choi, B.S.;Han, W.S.;Youn, C.J.;Ju, J.J.
    • Electronics and Telecommunications Trends
    • /
    • v.34 no.5
    • /
    • pp.99-112
    • /
    • 2019
  • A quantum light source is an essential element for quantum information technology, including quantum communication, quantum sensor, and quantum computer. Quantum light sources including photon number state, entangled state, and squeezed state can be divided into two types according to the generation mechanism, namely single emitter and non-linear based systems. The single emitter platform contains atom/ion trap, solid-state defect/color center, two-dimensional material, and semiconductor quantum dot, which can emit deterministic photons. The non-linear based platform contains spontaneous parametric down-conversion and spontaneous four-wave mixing, which can emit probabilistic photon pairs. For each platform, we give an overview of the recent research trends of the generation, manipulation, and integration of single photon and entangled photon sources. The characteristics of quantum light sources are investigated for each platform. In addition, we briefly introduce quantum sensing, quantum communication, and quantum computing applications based on quantum light sources. We discuss the challenges and prospects of quantum light sources for quantum information technology.

Numerical Research on Suppression of Thermally Induced Wavefront Distortion of Solid-state Laser Based on Neural Network

  • Liu, Hang;He, Ping;Wang, Juntao;Wang, Dan;Shang, Jianli
    • Current Optics and Photonics
    • /
    • v.6 no.5
    • /
    • pp.479-488
    • /
    • 2022
  • To account for the internal thermal effects of solid-state lasers, a method using a back propagation (BP) neural network integrated with a particle swarm optimization (PSO) algorithm is developed, which is a new wavefront distortion correction technique. In particular, by using a slab laser model, a series of fiber pumped sources are employed to form a controlled array to pump the gain medium, allowing the internal temperature field of the gain medium to be designed by altering the power of each pump source. Furthermore, the BP artificial neural network is employed to construct a nonlinear mapping relationship between the power matrix of the pump array and the thermally induced wavefront aberration. Lastly, the suppression of thermally induced wavefront distortion can be achieved by changing the power matrix of the pump array and obtaining the optimal pump light intensity distribution combined using the PSO algorithm. The minimal beam quality β can be obtained by optimally distributing the pumping light. Compared with the method of designing uniform pumping light into the gain medium, the theoretically computed single pass beam quality β value is optimized from 5.34 to 1.28. In this numerical analysis, experiments are conducted to validate the relationship between the thermally generated wavefront and certain pumping light distributions.

Development of Click Chemistry in Polymerization and Applications of Click Polymer

  • Karim, Md. Anwarul
    • Rubber Technology
    • /
    • v.13 no.1
    • /
    • pp.1-9
    • /
    • 2012
  • Click chemistry had enjoyed a wealthy decade after it was introduced by K.B.Sharpless and his co-worker on 2001. Since there is no optimized method for synthesis of click polymer, therefore, this paper introduced three click reaction methods such as catalyst, non-catalyst and azide-end capping for fluorene-based functional click polymers. The obtained polymers have reasonable molecular weight with narrow PDI. The polymers are thermally stable and almost emitted blue light emission. The synthesized fluorene-based functional click polymers were characterized to compare the effect of click reaction methods on polymer electro-optical properties as well as device performance on quasi-solid-state dye sensitized solar cells (DSSCs) applications. The DSSCs with configuration of $SnO_2:F/TiO_2/N719$ dye/quasi-solid-state electrolyte/Pt devices were fabricated using these click polymers as a solid-state electrolyte components. Among the devices, the catalyzed click polymer composed device exhibited a high power conversion efficiency of 4.62% under AM 1.5G illumination ($100mW/cm^2$).These click polymers are promising materials in device application and $Cu^I$-catalyst 1, 3-dipolar cycloaddition click reaction is an efficient synthetic methodology.

  • PDF

Storage Stability and Color Reproducibility of Yellow and Red Dyes Extracted from Carthamus tinctorius L.

  • Shin, Youn-Sook;Yoo, Dong-Il
    • Textile Coloration and Finishing
    • /
    • v.24 no.3
    • /
    • pp.165-172
    • /
    • 2012
  • The stability of yellow and red dyes prepared from safflower (Carthamus tinctorius L.) in aqueous solution and in solid state was investigated. External factors such as light irradiation and temperature on the stability were examined during storage. Changes in absorbance of dye solutions and the color changes of fabrics dyed after long time storage were measured. Also, color reproducibility during storage was investigated by dyeing test on various fabrics. Red colorant in aqueous solution was very unstable to light, resulting that about 40% of absorbance were lost in 12hrs. The absorbance of yellow dye solutions was not decreased within 84hrs. In aqueous medium, yellow dye was much more stable than carthamin. Both dyes are relatively stable for long storage when they are stored in solid state compared to when in aqueous solution. Color changes are marginal in both dyes.

Synthesis and Electrochemical Properties of Nanocrystalline LiFePO4 Obtained by Different Methods

  • Son, C.G.;Chang, D.R.;Kim, H.S.;Lee, Y.S.
    • Journal of Electrochemical Science and Technology
    • /
    • v.2 no.2
    • /
    • pp.103-109
    • /
    • 2011
  • Nanocrystalline $LiFePO_4$ powders were prepared at 660-$670^{\circ}C$ in an Ar atmosphere using two different synthetic routes, solid-state and sol-gel. Both materials showed well-developed XRD patterns without any impurity peaks. Particles composed in the range of 200-300 nm from the solid-state method, and 50-100 nm from the sol-gel method, were confirmed through scanning electron microscopy and dynamic light scattering. The $LiFePO_4$ obtained by the sol-gel method offered a high discharge capacity (153 mAh/g) and stable discharge behavior, even at elevated temperatures (50 and $60^{\circ}C$), whereas poor electrochemical performance was observed from the solid-state method. Rate capability studies for sol gel-derived $LiFePO_4$ ranged from 0.2 to 30 C, which revealed excellent retention over 70 cycles with a 99.9% capacity.

All Non-Dopant RGB Composing White Organic Light-Emitting Diodes

  • Yeh, Shi-Jay;Chen, Hung-Yang;Wu, Min-Fei;Chan, Li-Hsin;Chiang, Chih-Long;Yeh, Hsiu-Chih;Chen, Chin-Ti;Lee, Jiun-Haw
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1583-1586
    • /
    • 2006
  • All non-dopant white organic light-emitting diodes (WOLEDs) have been realized by using solid state highly fluorescent red bis(4-(N-(1- naphthyl)phenylamino)phenyl)fumaronitrile (NPAFN) and amorphous bipolar blue light-emitting 2-(4- diphenylamino)phenyl-5-(4-triphenylsilyl)phenyl- 1,3,4-oxadiazole (TPAOXD), together with well known green fluorophore tris(8- hydroxyquinolinato)aluminum $(Alq_3)$. The fabrication of multilayer WOLEDs did not involve the hard-tocontrol doping process. Two WOLEDs, Device I and II, different in layer thickness of $Alq_3$, 30 and 15 nm, respectively, emitted strong electroluminescence (EL) as intense as $25,000\;cd/m^2$. For practical solid state lighting application, EL intensity exceeding $1,000\;cd/m^2$ was achieved at current density of $18-19\;mA/cm^2$ or driving voltage of 6.5-8 V and the devices exhibited external quantum efficiency $({\eta}_{ext})$ of $2.6{\sim}2.9%$ corresponding to power efficiency $({\eta}_P)$ of $2.1{\sim}2.3\;lm/W$ at the required brightness.

  • PDF

ITO-Ag NW based Transparent Quantum Dot Light Emitting Diode (ITO-Ag NW기반 투명 양자점 발광 다이오드)

  • Kang, Taewook;Kim, Hyojun;Jeong, Yongseok;Kim, Jongsu
    • Korean Journal of Materials Research
    • /
    • v.30 no.8
    • /
    • pp.421-425
    • /
    • 2020
  • A transparent quantum dot (QD)-based light-emitting diode (LED) with silver nanowire (Ag NW) and indium-tin oxide (ITO) hybrid electrode is demonstrated. The device consists of an Ag NW-ITO hybrid cathode (-), zinc oxide, poly (9-vinylcarbazole) (PVK), CdSe/CdZnS QD, tungsten trioxide, and ITO anode (+). The device shows pure green-color emission peaking at 548 nm, with a narrow spectral half width of 43 nm. Devices with hybrid cathodes show better performances, including higher luminance with higher current density, and lower threshold voltage of 5 V, compared with the reference device with a pure Ag NW cathode. It is worth noting that our transparent device with hybrid cathode exhibits a lifetime 9,300 seconds longer than that of a device with Ag NW cathode. This is the reason that the ITO overlayer can protect against oxidization of Ag NW, and the Ag NW underlayer can reduce the junction resistance and spread the current efficiently. The hybrid cathode for our transparent QD LED can applicable to other quantum structure-based optical devices.

Picosecond Mid-Infrared 3.8 ㎛ MgO:PPLN Optical Parametric Oscillator Laser with High Peak Power

  • Chen, Bing-Yan;Wang, Yu-Heng;Yu, Yong-Ji;Jin, Guang-Yong
    • Current Optics and Photonics
    • /
    • v.5 no.2
    • /
    • pp.186-190
    • /
    • 2021
  • In this study, a compact, picosecond, mid-infrared 3.8 ㎛ MgO:PPLN optical parametric oscillator (OPO) laser output with high peak power is realized using a master oscillator power amplifier (MOPA) 1 ㎛ solid-state laser seeded by a picosecond fiber laser as the pump source. The pump source was a 50 MHz and 10 ps fiber seed source. After AOM pulse selection and two-stage solid-state amplification, a 1,064 nm laser output with a repetition frequency of 1-2 MHz, pulse width of 9.5 ps, and a maximum average power of 20 W was achieved. Furthermore, a compact short cavity with a unsynchronized pump is adopted through the design of an OPO cavity structure. When the injection pump power was 15 W and the repetition frequency was 1 MHz, the average output power of idler light was 1.19 W, and the corresponding peak power was 119 kW. The optical conversion efficiency was 7.93%. When the repetition frequency was increased to 2 MHz, the average output power of idler light was 1.63 W, the corresponding peak power was 81.5 kW, and the optical conversion efficiency was 10.87%. At the same time, the output wavelength was measured at 3,806 nm, and the beam quality was MX2 = 3.21 and MY2 = 3.34.