• Title/Summary/Keyword: Solid recovered fuel

Search Result 22, Processing Time 0.023 seconds

Hydrothermal carbonization of sewage sludge for solid recovered fuel and energy recovery (수열탄화를 이용한 하수 슬러지의 고형연료화 및 에너지 회수 효율)

  • Kim, Daegi;Lee, Kwanyong;Park, Kiyoung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.29 no.1
    • /
    • pp.57-63
    • /
    • 2015
  • Recently, Korea's municipal wastewater treatment plants generated amount of wastewater sludge per day. However, ocean dumping of sewage sludge has been prohibited since 2012 by the London dumping convention and protocol and thus removal or treatment of wastewater sludge from field sites is an important issue on the ground site. The hydrothermal carbonization is one of attractive thermo-chemical method to upgrade sewage sludge to produce solid fuel with benefit method from the use of no chemical catalytic. Hydrothermal carbonization improved that the upgrading fuel properties and increased materials and energy recovery, which is conducted at temperatures ranging from 200 to $350^{\circ}C$ with a reaction time of 30 min. Hydrothermal carbonization increased the heating value though the increase of the carbon and fixed carbon content of solid fuel due to dehydration and decarboxylation reaction. Therefore, after the hydrothermal carbonization, the H/C and O/C ratios decreased because of the chemical conversion. Energy retention efficiency suggest that the optimum temperature of hydrothermal carbonization to produce more energy-rich solid fuel is approximately $200^{\circ}C$.

Conversion of organic residue from solid-state anaerobic digestion of livestock waste to produce the solid fuel through hydrothermal carbonization

  • Yang, Seung Kyu;Kim, Daegi;Han, Seong Kuk;Kim, Ho;Park, Seyong
    • Environmental Engineering Research
    • /
    • v.23 no.4
    • /
    • pp.456-461
    • /
    • 2018
  • The solid-state anaerobic digestion (SS-AD) has promoted the development and application for biogas production from biomass which operate a high solid content feedstock, as higher than 15% of total solids. However, the digested byproduct of SS-AD can be used as a fertilizer or as solid fuel, but it has serious problems: high moisture content and poor dewaterability. The organic residue from SS-AD has to be improved to address these problems and to make it a useful alternative energy source. Hydrothermal carbonization was investigated for conversion of the organic residue from the SS-AD of livestock waste to solid fuels. The effects of hydrothermal carbonization were evaluated by varying the reaction temperatures within the range of $180-240^{\circ}C$. Hydrothermal carbonization increased the calorific value through the reduction of the hydrogen and oxygen contents of the solid fuel, in addition to its drying performance. Therefore, after the hydrothermal carbonization, the H/C and O/C atomic ratios decreased through the chemical conversion. Thermogravimatric analysis provided the changed combustion characteristics due to the improvement of the fuel properties. As a result, the hydrothermal carbonization process can be said to be an advantageous technology in terms of improving the properties of organic waste as a solid-recovered fuel product.

Performance Behavior by H2 and CO as a Fuel in Intermediate Temperature Solid Oxide Fuel Cell (IT-SOFC) (중.저온형 고체산화물 연료전지에서 연료로 공급되는 CO 와 H2 가 성능에 미치는 영향)

  • Park, Kwang-Jin;Bae, Joong-Myeon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.12
    • /
    • pp.963-969
    • /
    • 2008
  • The performance behavior of solid oxide fuel cell using $H_2$ and CO as fuels was investigated. The power densities and impedance results showed a little variation as the ratio of $H_2$ and CO changed. However, when the pure CO was used as a fuel, area specific resistance (ASR), especially low frequency region, was increased. This might be due to carbon deposition on anode. The maximum power density was 60% lower using CO than using $H_2$. Carbon deposition reduced after constant current was applied. The SOFC performance was recovered from the carbon deposition after applying constant current during 100h.

Estimated CO2 Emissions and Analysis of Solid Recovered Fuel (SRF) as an Alternative Fuel

  • Kim, Sang-Kyun;Jang, Kee-Won;Hong, Ji-Hyung;Jung, Yong-Won;Kim, Hyung-Chun
    • Asian Journal of Atmospheric Environment
    • /
    • v.7 no.1
    • /
    • pp.48-55
    • /
    • 2013
  • The purpose of this study was to develop a $CO_2$ emission factor for refuse plastic fuel (RPF) combustion facilities, and calculate the $CO_2$ emissions from these facilities. The $CO_2$ reduction from using these facilities was analyzed by comparing $CO_2$ emission to facilities using fossil fuels. The average $CO_2$ emission factor from RPF combustion facilities was 59.7 Mg $CO_2$/TJ. In addition, fossil fuel and RPF use were compared using net calorific value (NCV). Domestic RPF consumption in 2011 was 240,000 Mg/yr, which was compared to fossil fuels using NCV. B-C oil use, which has the same NCV, was equal to RPF use. In contrast, bituminous and anthracite were estimated at 369,231 Mg/yr and 355,556 Mg/yr, respectively. In addition, the reduction in $CO_2$ emissions due to the alternative fuel was analyzed. $CO_2$ emissions were reduced by more than 350 Mg $CO_2$/yr compared to bituminous and anthracite. We confirmed that using RPF, an alternative fuel, can reduce $CO_2$ emissions.

Solid Waste from Swine Wastewater as a Fuel Source for Heat Production

  • Park, Myung-Ho;Kumar, Sanjay;Ra, ChangSix
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.11
    • /
    • pp.1627-1633
    • /
    • 2012
  • This study was to evaluate the feasibility of recycling the solids separated from swine wastewater treatment process as a fuel source for heat production and to provide a data set on the gas emissions and combustion properties. Also, in this study, the heavy metals in ash content were analyzed for its possible use as a fertilizer. Proximate analysis of the solid recovered from the swine wastewater after flocculation with organic polymer showed high calorific (5,330.50 kcal/kg) and low moisture (15.38%) content, indicating that the solid separated from swine wastewater can be used as an alternative fuel source. CO and NOx emissions were found to increase with increasing temperature. Combustion efficiency of the solids was found to be stable (95 to 98%) with varied temperatures. Thermogravimetry (TG) and differential thermal analysis (DTA) showed five thermal effects (four exothermic and one endothermic), and these effects were distinguished in three stages, water evaporation, heterogeneous combustion of hydrocarbons and decomposition reaction. Based on the calorific value and combustion stability results, solid separated from swine manure can be used as an alternative source of fuel, however further research is still warranted regarding regulation of CO and NOx emissions. Furthermore, the heavy metal content in ash was below the legal limits required for its usage as fertilizer.

Effect of Flocculant Injection Ratio in NIR (Near-Infrared Ray) Drying for BIO-SRF (Solid Recovered Fuel) of Swage Sludge (하수슬러지 BIO-SRF (Solid Recovered Fuel) 생산을 위한 NIR (Near Infrared Ray) 건조시 응집제 주입비율이 미치는 영향)

  • Lee, Kang-min;Lee, Seung-Won
    • Journal of Environmental Science International
    • /
    • v.30 no.2
    • /
    • pp.135-143
    • /
    • 2021
  • This study executed evaluation of drying characteristics based on the polymer injection rate (8%, 10% and 12%) and the drying method[NIF(near-infrared ray). According to this study analyzed VS, VS/TS, and calorific value compared with 'the auxiliary fuel standard of the thermoelectric power plant and the combined heat & power plant'. The results are as follows. In the case of NIR, the VS was slightly changed at the early stage of the material preheating period and the constant drying rate period with low moisture evaporation. But VS reduction was shown higher as moisture was dried. In the case of non-digested sludge with high VS content, the VS reduction rate by drying was shown lower than that of digested sludge. As the flocculant injection rate increased, the VS loss due th drying was found to be small. Also, the higher the flocculant injection rate was the longer the drying time. Especially, in the case of the NIR drying equipment, as the moisture content of sewage sludge decreased(moisture content 20~40%), the loss of net VS also showed a tendency to increase sharply. It is shown that the high calorific value according to the drying time of the non-digested sludge was changed from 590 kcaℓ/kg to 3,005 kcaℓ/kg and from 539 kcaℓ/kg to 2,796 kcaℓ/kg.

Self-Regeneration of Intelligent Perovskite Oxide Anode for Direct Hydrocarbon-Type SOFC by Nano Metal Particles of Pd Segregated (Pd 나노입자의 자가 회복이 가능한 지능형 페로브스카이트 산화물 음극의 직접 탄화수소계 SOFC 성능 평가)

  • Oh, Mi Young;Ishihara, Tatsumi;Shin, Tae Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.5
    • /
    • pp.345-350
    • /
    • 2018
  • Nanomaterials have considerable potential to solve several key challenges in various electrochemical devices, such as fuel cells. However, the use of nanoparticles in high-temperature devices like solid-oxide fuel cells (SOFCs) is considered problematic because the nanostructured surface typically prepared by deposition techniques may easily coarsen and thus deactivate, especially when used in high-temperature redox conditions. Herein we report the synthesis of a self-regenerated Pd metal nanoparticle on the perovskite oxide anode surface for SOFCs that exhibit self-recovery from their degradation in redox cycle and $CH_4$ fuel running. Using Pd-doped perovskite, $La(Sr)Fe(Mn,Pd)O_3$, as an anode, fairly high maximum power densities of 0.5 and $0.2cm^{-2}$ were achieved at 1,073 K in $H_2$ and $CH_4$ respectively, despite using thick electrolyte support-type cell. Long-term stability was also examined in $CH_4$ and the redox cycle, when the anode is exposed to air. The cell with Pd-doped perovskite anode had high tolerance against re-oxidation and recovered the behavior of anodic performance from catalytic degradation. This recovery of power density can be explained by the surface segregation of Pd nanoparticles, which are self-recovered via re-oxidation and reduction. In addition, self-recovery of the anode by oxidation treatment was confirmed by X-ray diffraction (XRD) and scanning electron microscopy (SEM).

Comparative Characterization of AFC Precipitated Using Vacuum Drying, Dilution Precipitation and Spray Drying (감압건조, 희석침전, 분무건조 방식으로 제조된 무회분석탄의 특성)

  • Kwon, Ho Jung;Choi, Ho Kyung;Jo, Wan Taek;Kim, Sang Do;Yoo, Ji Ho;Chun, Dong Hyuk;Rhim, Young Joon;Lim, Jeong Hwan;Lee, Si Hyun;Rhee, Young Woo
    • Korean Chemical Engineering Research
    • /
    • v.54 no.2
    • /
    • pp.234-238
    • /
    • 2016
  • Solid ash-free coal (AFC) samples recovered from solvent-extracted solution by vacuum drying, dilution precipitation and spray drying methods were compared in terms of physical properties and chemical structure. AFC was prepared by using Kideco coal (Indonesian sub-bituminous coal) and polar N-methyl-2-pyrrolidone (NMP) solvent as raw materials. The physical properties of the AFCs were characterized with proximate, ultimate, and calorific value analysis. In analyzing the chemical structure, FTIR and NMR were used. the proximate analysis showed much reduced ash in the AFCs compared to parent raw coal. The FTIR result showed that the extraction solvent was not fully removed from the AFC prepared by vacuum drying. However, the solvent was not detected in the AFC recovered by using dilution precipitation. Dilution precipitation has advantages over the other two methods, since it can be done at relatively low temperature and separate ash-free coal from extraction solvent more effectively.

Removal of Uranium by an Alkalization and an Acidification from the Thermal Decomposed Solid Waste of Uranium-bearing Sludge (알카리화 및 산성화에 의한 우라늄 함유 슬러지의 열분해 고체 폐기물로부터 우라늄 제거)

  • Lee, Eil-Hee;Yang, Han-Beom;Lee, Keun-Young;Kim, Kwang-Wook;Chung, Dong-Yong;Moon, Jei-Kwon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.11 no.2
    • /
    • pp.85-93
    • /
    • 2013
  • This study has been carried out to elucidate the characteristics of the dissolution for Thermal Decomposed Solid Waste of uranium-bearing sludge (TDSW), the removal of impurities by an alkalization in a nitric acid dissolving solution of TDSW, and the selective removal (/recovery) of uranium by an acidification in an carbonate alkali solution, respectively. TDSW generated by thermal decomposition of U-bearing sludge which was produced in the uranium conversion plant operation, was stored in KAERI as a solid-powder type. It is found that the dissolution of TDSW is more effective in nitric acid dissolution than oxidative-dissolution with carbonate. At 1 M nitric acid solution, TDSW was undissolved about 30wt% as a solid residue, and uranium contained in TDSW was dissolved more than 99%. In order to the alkalization for the nitric acid dissolving solution of TDSW, carbonate alkalization is more effective with respect to remove the impurities. At the carbonate alkali solution controlled to about 9 of pH, Al, Ca, Fe and Zn co-dissolved with U in dissolution step was removed about $98{\pm}1%$. On the other hand, U could be recovered more than 99% by an acidification at pH about 3 in a carbonate alkali solution, which was nearly removed the impurities, adding 0.5M $H_2O_2$. It was found that uranium could be selectively recovered (/removed) from TDSW.

A Preliminary Study on Direct Ethanol SOFC for Marine Applications

  • Bo Rim Ryu;To Thi Thu Ha;Hokeun Kang
    • Journal of Navigation and Port Research
    • /
    • v.48 no.2
    • /
    • pp.125-136
    • /
    • 2024
  • This research presents an innovative integrated ethanol solid oxide fuel cell (SOFC) system designed for applications in marine vessels. The system incorporates an exhaust gas heat recovery mechanism. The high-temperature exhaust gas produced by the SOFC is efficiently recovered through a sequential process involving a gas turbine (GT), a regenerative system, steam Rankine cycles, and a waste heat boiler (WHB). A comprehensive thermodynamic analysis of this integrated SOFC-GT-SRC-WHB system was performed. A simulation of this proposed system was conducted using Aspen Hysys V12.1, and a genetic algorithm was employed to optimize the system parameters. Thermodynamic equations based on the first and second laws of thermodynamics were utilized to assess the system's performance. Additionally, the exergy destruction within the crucial system components was examined. The system is projected to achieve an energy efficiency of 58.44% and an exergy efficiency of 29.43%. Notably, the integrated high-temperature exhaust gas recovery systems contribute significantly, generating 1129.1 kW, which accounts for 22.9% of the total power generated. Furthermore, the waste heat boiler was designed to produce 900.8 kg/h of superheated vapor at 170 ℃ and 405 kP a, serving various onboard ship purposes, such as heating fuel oil and accommodations for seafarers and equipment.