• Title/Summary/Keyword: Solid columns

Search Result 83, Processing Time 0.025 seconds

Three-dimensional simplified slope stability analysis by hybrid-type penalty method

  • Yamaguchi, Kiyomichi;Takeuchi, Norio;Hamasaki, Eisaku
    • Geomechanics and Engineering
    • /
    • v.15 no.4
    • /
    • pp.947-955
    • /
    • 2018
  • In this study, we propose a three-dimensional simplified slope stability analysis using a hybrid-type penalty method (HPM). In this method, a solid element obtained by the HPM is applied to a column that divides the slope into a lattice. Therefore, it can obtain a safety factor in the same way as simplified methods on the slip surface. Furthermore, it can obtain results (displacement and strain) that cannot be obtained by conventional limit equilibrium methods such as the Hovland method. The continuity condition of displacement between adjacent columns and between elements for each depth is considered to incorporate a penalty function and the relative displacement. For a slip surface between the bottom surface and the boundary condition to express the slip of slope, we introduce a penalty function based on the Mohr-Coulomb failure criterion. To compute the state of the slip surface, an r-min method is used in the load incremental method. Using the result of the simple three-dimensional slope stability analysis, we obtain a safety factor that is the same as the conventional method. Furthermore, the movement of the slope was calculated quantitatively and qualitatively because the displacement and strain of each element are obtained.

Hysteretic behavior of perforated steel plate shear walls with beam-only connected infill plates

  • Shekastehband, Behzad;Azaraxsh, Ali A.;Showkati, Hossein
    • Steel and Composite Structures
    • /
    • v.25 no.4
    • /
    • pp.505-521
    • /
    • 2017
  • The steel plate shear wall with beam-only connected infill plate (SSW-BO) is an innovative lateral load resisting system consisting of infill plates connected to surrounding beams and separated from the main columns. In this research, the effects of perforation diameter as well as slenderness ratios of infill plates on the hysteresis behavior of SSW-BO systems were studied experimentally. Experimental testing is performed on eight one-sixth scaled one-story SSW-BO specimens with two plate thicknesses and four different circular opening ratios at the center of the panels under fully reversed cyclic quasi-static loading in compliance with the SAC test protocol. Strength, stiffness, ductility and energy absorption were evaluated based on the hysteresis loops. It is found that the systems exhibited stable hysteretic behavior during testing until significant damage in the connection of infill plates to surrounding beams at large drifts. It is also seen that pinching occurred in the hysteresis loops, since the hinge type connections were used as boundaries at four corners of surrounding frames. The strength and initial stiffness degradation of the perforated specimens containing opening ratio of 0.36 compared to the solid one is in the range of 20% to 30% and 40% to 50%, respectively.

Evaluation of Integrity of the Tubes in the Horizontal Fixed Tubesheet Heat Exchanger by Using Equivalent Modeling (고정 튜브시트를 갖는 수평형 열교환기의 등가 모델링을 이용한 튜브 건전성 평가)

  • Jeon, Yun-Cheol;Kim, Tae-Wan;Jeong, Dong-Gwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.1
    • /
    • pp.179-187
    • /
    • 2002
  • Finite element analysis was performed to evaluate the integrity of the tubes in the fixed tubesheet of horizontal type heat exchanger under operating condition. For the finite element analysis of the heat exchanger, tubes and tubesheets were equivalently modeled with concentroidal hexagonal columns and solid plates having equivalent properties for the convenience of finite element modeling, respectively. Load combination of tube pressure and thermal expansion most likely to precipitate possible failure of the tubes was selected and applied to the finite element analysis. The compressive stresses of the tubes were calculated based on displacements of each tube, which were obtained from anile element analysis. Finally, the maximum tube stress was compared with the design criterion of ASME Boiler and Pressure Vessel Code Section VIII.

Seismic performance improvement of RC buildings with external steel frames

  • Ecemis, Ali Serdar;Korkmaz, Hasan Husnu;Dere, Yunus
    • Computers and Concrete
    • /
    • v.27 no.4
    • /
    • pp.343-353
    • /
    • 2021
  • In this study, in order to improve the seismic performance of existing reinforced concrete (RC) framed structures, various external attachment of corner steel frame configurations was considered as a user-friendly retrofitting method. The external steel frame is designed to contribute to the lateral stiffness and load carrying capacity of the existing RC structure. A six-story building was taken into account. Four different external corner steel frame configurations were suggested in order to strengthen the building. The 3D models of the building with suggested retrofitting steel frames were developed within ABAQUS environment using solid finite elements and analyzed under horizontal loadings nonlinearly. Horizontal top displacement vs loading curves were obtained to determine the overall performance of the building. Contributions of steel and RC frames to the carried loads were computed individually. Load/capacity ratios for the ground floor columns were presented. In the study, 3D rendered images of the building with the suggested retrofits are created to better visualize the real effect of the retrofit on the final appearance of the façade of the building. The analysis results have shown that the proposed external steel frame retrofit configurations increased the lateral load carrying capacity and lateral stiffness and can be used to improve the seismic performance of RC framed buildings.

Analysis of Volatile Compounds in Bamboo and Wood Crude Vinegars by the Solid-Phase Microextracion(SPME) Method (SPME법에 의한 죽초 및 목초액 중의 휘발성 성분 분석)

  • Mun, Sung-Phil;Ku, Chang-Sub
    • Journal of the Korean Wood Science and Technology
    • /
    • v.30 no.4
    • /
    • pp.80-86
    • /
    • 2002
  • Volatile compounds in three different kinds of crude vinegars obtained from oak (Quercus serrata), bamboo (phyllostachys) and pine (Pinus densiflora) species were analyzed by the solid-phase microextraction (SPME) method. A total of 264 peaks were detected on the chromatograms obtained from the polar (CBP 20) and the nonpolar (CBP 1) columns, which were used for analyzing the volatile compounds in these vinegars. The major volatile compounds identified by using the polar column were 2-butanone, acetic acid, guaiacol, phenol, cresols, 4-ethyl guaiacol, 4-ethyl phenol, and syringol. Using the nonpolar column, seven compounds could be identified: 1,2-dimethoxybenzyl alcohol, 1-hydroxy-2-butanone, 1-(2-furanyl)-1-propane, ethisolide, furfuryl acetate, 1,2-dimethoxybenzene, phenyl acetate. The volatile compounds were classified into five groups: phenols, neutral compounds, organic acids, esters and others. The phenols were the main component and comprised 49~65% of the volatile compounds of these vinegars. In the case of bamboo vinegar, the proportion of the phenols in the volatile compounds was lower than that of the two wood vinegars. However, the proportions of the neutral compounds and the organic acids were higher than those of the wood vinegars. Therefore, it seems that these differences of the proportions of the volatile compounds would make a certain difference of a smoke flavor between the bamboo vinegar and the wood vinegars.

Quality Characteristics of baechu Kimchi Salted with Recycled Wastebrine (재활용 절임수로 제조한 배추 김치의 특성)

  • 윤혜현;이숙영
    • Korean journal of food and cookery science
    • /
    • v.19 no.5
    • /
    • pp.609-615
    • /
    • 2003
  • In the Kimchi manufacturing industry, the process of brining baechu produces a vast amount of high salinity waste water. To study if this brine can be recycled, the quality characteristics of Kimchi salted by waste brine(F), which was used five times successively, was compared with those salted using water after recycling filtration through sand (F1) and activated carbon (F2) columns. No significant difference in the salinity and soluble solid contents, during fermentation at 10 was observed among the samples, but the salinity and soluble solid contents of the F-sample were slightly higher than in the control. The F1 and control Kimchi showed similar pHs and titratable acidities, while the F-Kimchi had a lower pH and a higher acidity during fermentation. The numbers of total viable cells were highest in the F, and lowest in the F2-Kimchi, while the counts of lactic acid bacteria were lowest in the F-Kimchi. The sensory tests for appearance, odor, taste and overall acceptance showed that the F-Kimchi was the least desirable, the F2-Kimchi had lower sour odor and taste, and a higher toughness, than the others. The F1- and control Kimchi had similar sensory grades for appearance, odor, and tastes, and there were no significant difference in the overall acceptance, showing the possibility of recycling wastewaters as brine for the production of baechu Kimchi.

Development of fission 99Mo production process using HANARO

  • Lee, Seung-Kon;Lee, Suseung;Kang, Myunggoo;Woo, Kyungseok;Yang, Seong Woo;Lee, Junsig
    • Nuclear Engineering and Technology
    • /
    • v.52 no.7
    • /
    • pp.1517-1523
    • /
    • 2020
  • The widely used medical isotope technetium-99 m (99mTc) is a daughter of Molybdenum-99 (99Mo), which is mainly produced using dedicated research reactors from the nuclear fission of uranium-235 (235U). 99mTc has been used for several decades, which covers about 80% of the all the nuclear diagnostics procedures. Recently, the instability of the supply has become an important topic throughout the international radioisotope communities. The aging of major 99Mo production reactors has also caused frequent shutdowns. It has triggered movements to establish new research reactors for 99Mo production, as well as the development of various 99Mo production technologies. In this context, a new research reactor project was launched in 2012 in Korea. At the same time, the development of fission-based 99Mo production process was initiated by Korea Atomic Energy Research Institute (KAERI) in 2012 in order to be implemented by the new research reactor. The KAERI process is based on the caustic dissolution of plate-type LEU (low enriched uranium) dispersion targets, followed by the separation and purification using a series of columns. The development of proper waste treatment technologies for the gaseous, liquid, and solid radioactive wastes also took place. The first stage of this process development was completed in 2018. In this paper, the results of the hot test production of fission 99Mo using HANARO, KAERI's 30 MW research reactor, was described.

A study on shear behavior characteristics of RC hollow rectangular sectional piers (RC 중공구형단면 교각의 전단거동특성에 관한 연구)

  • Jung, Ji-Hwan;Sun, Chang-Ho;Kim, Ick-Hyun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.113-116
    • /
    • 2008
  • In recent the construction of bridges having hollow sectional piers is gradually increasing since the hollow section is more effective than solid section in resistance against seismic load. It is, therefore, very important to understand the behavior of columns with hollow sections in seismic design. However, many past researches were concentrated only on the flexural deformability of them. In this study the shear characteristics of them have been studied with scale model tests. 7 models having different void and aspect ratios were designed and tested to investigate the effect of them on shear capacities. And then the validity of empirical equations to predict shear capacity was investigated compared with the test results. The test result 80 percent of the valid area of cross section should be adequate. And compared to the proposed four model the experimental shear capacities are in good agreement with the UCB.

  • PDF

Titanized or Zirconized Porous Silica Modified with a Cellulose Derivative as New Chiral Stationary Phases

  • Seo, You-Jin;Kang, Gyoung-Won;Park, Seong-Tae;Moon, Myeong-Hee;Park, Jung-Hag;Cheong, Won-Jo
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.6
    • /
    • pp.999-1004
    • /
    • 2007
  • Spherical porous silica supports modified with titanium or zirconium alkoxides were prepared, and allyl groups were chemically attached to the titanized or zirconized silica supports, and the product was cross-polymerized with a double bond containing cellulose derivative to yield new CSPs (chiral stationary phases). Magic angle spinning 13C solid state NMR and elemental analysis were used to characterize the CSPs. The performances of the chiral stationary phases were examined in comparison with a conventional chiral stationary phase. Spherical porous silica particles modified with 3,5-dimethylphenylcarbamate of cellulose were prepared and used as the conventional chiral stationary phase. Chromatographic data were collected for a few pairs of enantionmers in heptane/2-propanol mixed solvents of various compositions with the three chiral columns and the results were comparatively studied. The separation performance of the chrial phase made of the titanized silica was better than the others, and the separation performance of the chiral phase of the zirconized silica was comparable to that of the conventional chiral phase. The superiority of titanized silica over bare or zirconized silica in chiral separation seemed to be owing to the better yield of crosslinking (monitored by increase of carbon load) for titanized silica than for the others.

Characteristics of Leaves, Roots, and Fruit as Influenced by Energized-Functional Water Supply in Fuji Apple Trees (Energized 기능수 처리에 따른 후지사과의 잎, 뿌리 및 과실특성)

  • Kim, Wol Soo;Chung, Soon Ju
    • Horticultural Science & Technology
    • /
    • v.16 no.2
    • /
    • pp.233-235
    • /
    • 1998
  • Energized-functional water (EFW) and powder (EFP) were manufactured by Kyungwon Institute of Life Science, Seoul, through a series of processes; tap water ultra-purification energy imprinting with catalysts in platinum columns mixing energy-imprinted water + activated zeolites + photosynthetic bacteria fermenting at $25^{\circ}C$ filtering EFW and/or EFP. A single application of EFP to soil under tree canopy before bud burst, combined with three EFW applications to soil during growth of 'Fuji' apples (Malus domestica Borkh.) resulted in a higher Ca concentrations in fruit skins and flesh, and lower Ca and N concentrations in leaves and shoot-bark tissues. EFW also stimulated the net photosynthesis of leaves and root activity. Soluble solid concentrations (SSC) and anthocyanin levels of fruits were also significantly increased at harvest, producing greater firmness and less core browning during storage at $0^{\circ}C$. However, there was no significant difference in titratable acidity of fruit juice between the EFW treatment and the controls.

  • PDF