• 제목/요약/키워드: Solid and Structural Mechanics

검색결과 210건 처리시간 0.022초

재료역학과 구조역학 수업을 위한 전산프로그램 개발 (Development of New Computer Program for Mechanics of Materials and Structural Mechanics Courses)

  • 이상순
    • 한국실천공학교육학회논문지
    • /
    • 제3권2호
    • /
    • pp.106-113
    • /
    • 2011
  • The new computer program, visual SolidMech (ver 2.0), for mechanics of materials and structural mechanics has been developed using visual C++. The visual SolidMech is organized in a format similar to most standard texts on mechanics of materials and structural mechanics. This program consists of a number of menus to perform various calculations as well as a set of dedicated graphical user interfaces. Solutions to problems are given in both graphical and numerical forms. The visual SolidMech will help students develop problem-solving skills by showing them the important factors affecting various problem types, by helping them visualize the nature of internal stresses and member deformations, and by providing them an easy-to-use means of investigating a greater number of problems and variations. This new program can be utilized as a supplement to existing texts in mechanics of materials and structural mechanics.

  • PDF

Application of model reduction technique and structural subsection technique on optimal sensor placement of truss structures

  • Lu, Lingling;Wang, Xi;Liao, Lijuan;Wei, Yanpeng;Huang, Chenguang;Liu, Yanchi
    • Smart Structures and Systems
    • /
    • 제15권2호
    • /
    • pp.355-373
    • /
    • 2015
  • An optimal sensor placement (OSP) method based on structural subsection technique (SST) and model reduction technique was proposed for modal identification of truss structures, which was conducted using genetic algorithm (GA). The constraints of GA variables were determined by SST in advance. Subsequently, according to model reduction technique, the optimal group of master degrees of freedom and the optimal objective function value were obtained using GA in a case of the given number of sensors. Correspondingly, the optimal number of sensors was determined according to optimal objective function values in cases of the different number of sensors. The proposed method was applied on a scaled jacket offshore platform to get its optimal number of sensors and the corresponding optimal sensor layout. Then modal kinetic energy and modal assurance criterion were adopted to evaluate vibration energy and mode independence property. The experiment was also conducted to verify the effectiveness of the selected optimal sensor layout. The results showed that experimental modes agreed reasonably well with numerical results. Moreover the influence of the proposed method using different optimal algorithms and model reduction technique on optimal results was also compared. The results showed that the influence was very little.

A finite element-experimental study of the impact of spheres on aluminium thin plates

  • Micheli, Giancarlo B.;Driemeier, Larissa;Alves, Marcilio
    • Structural Engineering and Mechanics
    • /
    • 제55권2호
    • /
    • pp.263-280
    • /
    • 2015
  • This paper describes a study of the collision of hard steel spheres against aluminium thin circular plates at speeds up to 140 m/s. The tests were monitored by a high speed camera and a chronoscope, which allowed the determination of the ballistic limit and the plate deformation pattern. Quasi-static material parameters were obtained from tests on a universal testing machine and dynamic mechanical characterization of two aluminium alloys were conducted in a split Hopkinson pressure bar. Using a damage model, the perforation of the plates was simulated by finite element analysis. Axisymmetric, shell and solid elements were employed with various parameters of the numerical analysis being thoroughly discussed, in special, the dynamic model parameters. A good agreement between experiments and the numerical analysis was obtained.

An incompatible 3D solid element for structural analysis at elevated temperatures

  • Yu, Xinmeng;Zha, Xiaoxiong;Huang, Zhaohui
    • Structural Engineering and Mechanics
    • /
    • 제40권3호
    • /
    • pp.393-410
    • /
    • 2011
  • The eight-node 3D solid element is one of the most extensively used elements in computational mechanics. This is due to its simple shape and easy of discretization. However, due to the parasitic shear locking, it should not be used to simulate the behaviour of structural members in bending dominant conditions. Previous researches have indicated that the introduction of incompatible mode into the displacement field of the solid element could significantly reduce the shear locking phenomenon. In this study, an incompatible mode eight-node solid element, which considers both geometric and material nonlinearities, is developed for modelling of structural members at elevated temperatures. An algorithm is developed to extend the state determination procedure at ambient temperature to elevated temperatures overcoming initially converged stress locking when the external load is kept constant. Numerical studies show that this incompatible element is superior in terms of convergence, mesh insensitivity and reducing shear locking. It is also showed that the solid element model developed in this paper can be used to model structural behaviour at both ambient and elevated temperatures.

Modeling of coupled THMC processes in porous media

  • Kowalsky, Ursula;Bente, Sonja;Dinkler, Dieter
    • Coupled systems mechanics
    • /
    • 제3권1호
    • /
    • pp.27-52
    • /
    • 2014
  • For landfill monitoring and aftercare, long-term prognoses of emission and deformation behaviour are required. Landfills may be considered as heterogeneous porous soil-like structures, in which flow and transport processes of gases and liquids interact with local material degradation and mechanical deformation of the solid skeleton. Therefore, in the framework of continuous porous media mechanics a model is developed that permits the investigation of coupled mechanical, hydraulical and biochemical processes in municipal solid waste landfills.

고속 도함수 근사화에 의해 개선된 무요소법을 이용한 선형탄성 고체문제의 응력해석 (Stress Analysis of Linear Elastic Solid Problems by using Enhanced Meshfree Method based on Fast Derivatives Approximation)

  • 이상호;김효진;윤영철
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.583-590
    • /
    • 2002
  • Point collocation method based on the fast derivatives approximation of meshfree shape function is applied to solid mechanics in this study. Enhanced meshfree approximation with approximated derivative of shape function is reviewed, and formulation of linear elastic solid mechanics by point collocation method is presented. It implies that governing equation of solid mechanics with strong form is directly formulated without no numerical integration cells or grid. The regularity of weight function is not required due to a use of approximated derivative, so we propose the exponential type weight function that is discontinuous in first derivative. The convergence and stability of the proposed method is verified by passing the generalized patch test. Also, the efficiency and applicability of the proposed method in solid mechanics is verified by solving types of solid problems. Numerical results show that not only a use of proposed weight function leads lower error and higher convergence rate than that of the conventional weight functions, but also the improved collocation method with derivative approximation enables to compute the derivatives of shape function very fast and accurately enough to replace the classical direct derivative calculation.

  • PDF

Analysis of behaviour for hollow/solid concrete-filled CHS steel beams

  • Kvedaras, Audronis Kazimieras;Sauciuvenas, Gintas;Komka, Arunas;Jarmolajeva, Ela
    • Steel and Composite Structures
    • /
    • 제19권2호
    • /
    • pp.293-308
    • /
    • 2015
  • Interaction between the external thin-walled steel tube and the internal concrete core significantly increases the bending resistance of composite beams and beam-columns in comparison with the steel or concrete members. There is presented a developed method for design of hollow and solid concrete-filled steel tubular beams based on test data, which gives better agreement with test results than EC4 because its limitation to take an increase in strength of concrete caused by confinement contradicts the recommendation of 6.7.2(4) that full composite action up to failure may be assumed between steel and concrete components of the member. Good agreement between the results of carried out experimental, numerical and theoretical investigations allows recommending the proposed method to use in design practice.

Free vibration and buckling analyses of functionally graded annular thin sector plate in-plane loads using GDQM

  • Mohammadimehr, Mehdi;Afshari, Hasan;Salemi, M.;Torabi, K.;Mehrabi, Mojtaba
    • Structural Engineering and Mechanics
    • /
    • 제71권5호
    • /
    • pp.525-544
    • /
    • 2019
  • In the present study, buckling and free vibration analyses of annular thin sector plate made of functionally graded materials (FGMs) resting on visco-elastic Pasternak foundation, subjected to external radial, circumferential and shear in-plane loads is investigated. Material properties are assumed to vary along the thickness according to an power law with Poisson's ratio held constant. First, based on the classical plate theory (CPT), the governing equation of motion is derived using Hamilton's principle and then is solved using the generalized differential quadrature method (GDQM). Numerical results are compared to those available in the literature to validate the convergence and accuracy of the present approach. Finally, the effects of power-law exponent, ratio of radii, thickness of the plate, sector angle, and coefficients of foundation on the fundamental and higher natural frequencies of transverse vibration and critical buckling loads are considered for various boundary conditions. Also, vibration and buckling mode shapes of functionally graded (FG) sector plate have been shown in this research. One of the important obtained results from this work show that ratio of the frequency of FG annular sector plate to the corresponding values of homogeneous plate are independent from boundary conditions and frequency number.

Transient energy flow in ship plate and shell structures under low velocity impact

  • Liu, Z.S.;Swaddiwudhipong, S.;Lu, C.;Hua, J.
    • Structural Engineering and Mechanics
    • /
    • 제20권4호
    • /
    • pp.451-463
    • /
    • 2005
  • Structural members commonly employed in marine and off-shore structures are usually fabricated from plates and shells. Collision of this class of structures is usually modeled as plate and shell structures subjected to dynamic impact loading. The understanding of the dynamic response and energy transmission of the structures subjected to low velocity impact is useful for the efficient design of this type of structures. The transmissions of transient energy flow and dynamic transient response of these structures under low velocity impact are presented in the paper. The structural intensity approach is adopted to study the elastic transient dynamic characteristics of the plate structures under low velocity impact. The nine-node degenerated shell elements are adopted to model both the target and impactor in the dynamic impact response analysis. The structural intensity streamline representation is introduced to interpret energy flow paths for transient dynamic response of the structures. Numerical results, including contact force and transient energy flow vectors as well as structural intensity stream lines, demonstrate the efficiency of the present approach and attenuating impact effects on this type of structures.