• Title/Summary/Keyword: Solid Propulsion

Search Result 526, Processing Time 0.028 seconds

Development of Components in Micro Solid Propellant Thruster. (마이크로 고체 추진제 추력기의 요소 개발)

  • 이종광;이대훈;권세진
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.147-150
    • /
    • 2003
  • The purpose of this research was to develope components of micro solid propellant thruster. Micro solid propellant thruster had four basic components: combustion chamber, nozzle, solid propellant and micro heater for ignition. A performance of micro heater and characteristic of solid propellant was investigated. Micro heater was fabricated by conventional MEMS process and Platinum layer was used for heating element. Effect of geometry parameters on micro heater was tested. The temperature responses of heater with respect to each parameters was compared for a given electrical power. The characteristic of solid propellant(HTPB/AP) was investigated to obtain burning velocity in small chamber. Additionally, a capacity of filling propellant with high viscosity in small chamber was checked to guarantee for the micro fabrication.

  • PDF

Numerical Simulation of Two-Phase Flow field and Performance Prediction for Solid Rocket Motor Nozzle

  • Wahab, Shafqat;Kan, Xie;Yu, Liu
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.275-282
    • /
    • 2008
  • This paper presents numerical investigation of multi-phase flow in solid rocket motor nozzle and effect of multi-phases on the performance prediction of the Solid Rocket Motor. Aluminized propellants are frequently used in solid rocket motors to increase specific impulse. An Eulerian-Lagrangian description has been used to analyze the motion of the micrometer sized and discrete phase that consist of the larger particulates present in the Solid Rocket Motor. Uniform particles diameters and Rosin-Rammler diameter distribution method has been used for the simulation of different burning of aluminum droplets generating aluminum oxide smokes. Roe-FDS scheme has been used to simulate the effects of the multi-phase flow. The results obtained show the sensitivity of this distribution to the nozzle flow dynamics, primarily at the nozzle inlet and exit. The analysis also provides effect of two phases on performance prediction of Solid Rocket Motor.

  • PDF

Characteristics of HTPB/AP/AOT Solid Propellant (HTPB/AP/AOT 고체 추진제의 특성 연구)

  • Kim, Miri;Choi, Jaesung;Kim, Jeongeun;Hong, Myungpyo;Lee, Hyoungjin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.1
    • /
    • pp.7-15
    • /
    • 2018
  • In this study, AOT that is used as a surfactant in various industries was applied to an HTPB/AP solid propellant. AOT is one of the anionic surfactants, and there have been cases where AOT was reported to induce self-extinguishable properties in propellants overseas. In this study, solid propellants using AOT were prepared, and their properties and combustion characteristics were investigated. The combustion rate of the AOT-applied propellant drops sharply when the pressure reaches a certain value during combustion. Further, the density and hardness of the propellant are lower than those of conventional HTPB/AP propellants.

Solid Propellants for Propulsion System Including a Yellow Iron Oxide (황색산화철을 포함하는 혼합형 추진제의 특성에 관한 연구)

  • Park, Sungjun;Won, Jongung;Park, Jungho;Park, Euiyong;Choi, Sunghan
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.3
    • /
    • pp.65-71
    • /
    • 2018
  • There is no significant difference in the initial viscosity of a propellant applied with yellow iron oxide and red iron oxide. In addition, the thermal decomposition rate of the material with added yellow iron oxide is faster than that with the addition of red iron oxide. Specifically, it was confirmed that the pressure exponent was 18% lower at high temperature and high pressure with yellow iron oxide than with red iron oxide. The initial viscosity was lowest at 71% of the large particle to small particle ratio.

Experimental Study on the Extinction Characteristics of the Solid Properllant (고체 추진제어의 소화특성 연구)

  • Hwang Yong Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.8 no.3
    • /
    • pp.61-67
    • /
    • 2004
  • The extinction characteristics of the solid propellant were studied experimentally in this paper. These characteristics are required for designing TCO (thrust cut off) system of the solid rocket motor Parameters to characterize solid propellant extinction were defined by physical observation. A device was designed (or acquiring these parameters and the firing tests were implemented to get the preliminary data for the extinction characteristics of HTBP propellant.

Fabrication method and performance evaluation of components of micro solid propellant thruster (마이크로 고체 추진제 추력기 요소의 가공 방법 및 성능 평가)

  • Lee, Jong-Kwang;Park, Jong-Ik;Kwon, Se-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.225-228
    • /
    • 2007
  • Micro solid propellant thruster is the most feasible for development with current MEMS. Basic components of micro solid propellant thruster are diverging nozzle, micro igniter, combustion chamber, and solid propellant. Micro nozzles and micro chambers were fabricated using photosensitive glass by anisotropic wet etching technique. Micro Pt heaters on glass membrane which ignited solid propellant were developed. Components of thruster were integrated. Successful ignition was observed.

  • PDF

A Study on the High Performance Solid Propellant for Variable Thrust Solid Rocket Motor (가변추력 로켓 모타용 고성능 고체 추진제에 관한 연구)

  • Min, Byoung-Sun;Kim, Chang-Kee;Yoo, Ji-Chang
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.317-320
    • /
    • 2010
  • In this study, the requirements for propellants to modulate the thrust of solid rocket motor were primarily investigated, followed by searching the research trends for propellants which would be feasible for the controlled solid rocket motor. And then, the theoretical performance and combustion characteristics of solid propellants being studied in ADD were demonstrated briefly.

  • PDF