• Title/Summary/Keyword: Solid Propulsion

Search Result 526, Processing Time 0.041 seconds

Review of the Solid Propulsion Trend in the Launch Vehicle(1) (발사체 고체 추진기관 동향 리뷰(1))

  • Lee, Tae-Ho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.201-212
    • /
    • 2012
  • In general solid propulsion offers cost effective, large thrust capabilities comparing to the liquid propulsion which offers high specific impulse and restart capabilities. Therefore solid propulsion is well fitted for the first stage and boosters. BBL approach has been studied for the launch vehicle because of cost effectiveness, limited development time and low risk. Using of the carbon fiber epoxy resin in the solid rocket motor case is expanded, and specially high strength fibers are more attracted since its inert mass reduction.

  • PDF

Review of the Solid Propulsion Trend in the Launch Vehicle(1) (발사체 고체 추진기관 동향 리뷰(1))

  • Lee, Tae-Ho
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.5
    • /
    • pp.97-107
    • /
    • 2012
  • In general, solid propulsion offers cost effective, large thrust capabilities comparing to the liquid propulsion which offers high specific impulse and restart capabilities. Therefore, solid propulsion is well fitted for the first stage and boosters. Building Block Launcher(BBL) approach has been studied for the launch vehicle because of cost effectiveness, limited development time and low risk. Using of the carbon fiber epoxy resin in the solid rocket motor case is expanded, and specially high strength fibers are more attracted since its inert mass reduction.

Study on Predicting the Thrust Performance of Solid Rocket Motor with Two Kinds of Propellants (이종 추진제가 적용된 고체 추진기관의 추력성능예측에 대한 연구)

  • Kim, Hanjun;Moon, Kyungje;Cho, Pyungki
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.1
    • /
    • pp.77-83
    • /
    • 2021
  • In the current study, the numerical method was established to predict the performance of a solid rocket motor with two kinds of propellants. On the basis of a numerical study, an internal ballistics analysis code was developed. To verify the internal ballistics analysis code two solid rocket motors were manufactured and tested. The accuracy and applicability of the internal ballistics code for dual-propellant solid rocket motor were verified by comparing the experimental results with the numerical calculation.

MEMS Application of Quenching Effect to a Novel Micro Solid Rocket

  • Ebisuzaki, Hideyo;Nagayama, Kunihito;Ikuta, Tatsuya;Takahashi, Koji
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.601-604
    • /
    • 2004
  • Precise position and attitude control of pico-satellite requires huge number of impulses of the order of 10$^{-6}$ Ns. MEMS solid rocket array is a promising propulsion system but the higher degree of miniaturization causes unreliable operation mainly due to quenching. In order to breakthrough this situation, a novel design of solid micro-rocket is proposed, which generates tiny impulses repetitively from a single rocket not from array. This unique micro-rocket is based on the utilization of quenching, which causes propellant reaction to sustain only in a small area. A test chip of a micro solid propellant tank and micro heater array is fabricated and ignition test is conducted. Obtained results show the feasibility of this concept and future direction of this quenching-based propulsion is discussed.

  • PDF

Control of pressure and thrust for a variable thrust solid propulsion system using linearization (선형화 기법을 이용한 가변추력 고체추진 기관의 압력 및 추력 제어)

  • Kim, Young-Seok;Cha, Ji-Hyeong;Ko, Sang-Ho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.167-174
    • /
    • 2011
  • Solid propulsion systems have simple structures compared to other propulsion systems and are suitable to long-term storage. However the systems generally have limits on control of thrust levels. In this paper we suggest control algorithms for combustion chamber pressure of variable thrust solid propulsion systems using special nozzles such as pintle valve. For this we use a simple pressure change model by considering only mass conservation within the combustion chamber, design a classical algorithm and also a nonlinear controller using feedback linearization technique. Derived thrust equation and designe a thrust control model. We design the proportion-integral controller for linearizing about operating point. We also demonstrate the performance of controller model through numerical simulations.

  • PDF

Study on Combustion Characteristics of Thermoplastic Solid Propellants Embedded with Metal Wires (금속선이 삽입된 열가소성 추진제의 연소 특성 고찰)

  • Lee, Sunyoung;Oh, Jongyun;Lee, Hyunseob;Khil, Taeock;Kim, Minho
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.4
    • /
    • pp.21-27
    • /
    • 2022
  • In this paper, the combustion characteristics of solid propellant embedded with metal wires were analyzed by the ground tests of motors. The propellant grains were made of thermoplastic propellants with Al and Cu as metal wires for the enhancement of burning area and designed with cone shape for better ignition. These metals were used to confirm the enhancement of burning rate on thermal diffusivity properties. The internal ballistics analysis and ground test were performed to investigate the effect of burning rate for each metal wire. We obtained the results of burning rate on a difference of thermal diffusivity of each metal wire with well-made propellant grains.

Design for a Subminiature Solid Rocket Motor (초소형 고체 로켓 모터의 설계)

  • Lee, Sunyoung;Lee, Hyunseob;Yang, Heeseong;Khil, Taeock;Kim, Dongwook;Bang, Jaehoon;Choi, Sungho;Lee, Yongseon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.6
    • /
    • pp.45-52
    • /
    • 2020
  • In this paper, a subminiature solid rocket motor(SSRM) was designed to develop a miniature smart-bullet and the designed propellant grain was made of thermoplastic propellant for production convenience of inner shape. The internal ballistics analysis and ground test were performed to investigate the performance of SSRM. And a numerical simulation was carried out to obtain basic data on the design of safety distance between the nozzle outlet and a gunner, the temperature distribution of exhaust gas was analyzed by comparing a numerical simulation and the results of IR camera.

Intergrated Design Software Development for Solid Rocket Motors (고체 추진기관 설계를 위한 통합 프로그램 개발)

  • Lee, Jun-Ho;Rho, Tae-Ho;Choi, Sung-Han;Suh, Hyuk
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.57-60
    • /
    • 2008
  • There exist a lot of factors and restrictions for the design of solid rocket motors like burning rate, of solid propellant, demanded thrust, chamber pressure, diameter, length, weight and acceleration. For the optimization of these factors and restrictions, integrated design software for internal/external ballistic analysis was developed and verified by the performance test of solid rocket motors.

  • PDF

The Performance Evaluation of C/SiC Composite for Rocket Propulsion Systems (추진기관용 C/SiC 복합재료의 특성 평가)

  • Kim, Yun-Chul
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.433-438
    • /
    • 2009
  • The main objective of this research effort is to develop the performance of C/SiC composites manufactured by LSI (Liquid Silicon Infiltration) method for solid and liquid rocket propulsion system and ensure the performance analysis technique. The high performance and reliability of C/SiC composite are proved for solid and liquid rocket propulsion system. And the performance analysis technique related to mathematical ablation model is originated.

  • PDF

Study on combustion characteristics of seawater-reactive solid propellant for underwater propulsion (수중추진을 위한 해수반응성 고체추진제의 연소특성에 관한 연구)

  • Park, Kilsu;Kim, Taegyu
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.128-130
    • /
    • 2017
  • $NaBH_4$ was added to improve the water reactivity of aluminum powder as a solid propellant for underwater propulsion. Aluminum powders showed different combustion characteristics depending on the amount of $NaBH_4$ added. When $NaBH_4$ was added, it was burned by reaction with water even at a temperature much lower than the boiling point. In this study, it was confirmed that $NaBH_4$ is an effective additive to accelerate the vapor reaction with Al powder.

  • PDF