• 제목/요약/키워드: Solid Freeform Fabrication

검색결과 87건 처리시간 0.032초

임의형상가공시스템을 위한 정속위치제어기 개발 (A Development of Constant-Speed Position Controller for Solid Freeform Fabrication System)

  • 고민국;김승우
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2002년도 하계종합학술대회 논문집(5)
    • /
    • pp.91-94
    • /
    • 2002
  • SFFS(Solid Freeform Fabrication System) is commercializing to rapid prototyping concept in foreign some corporations including the U.S.A, have much technological problems yet and need new mode for agile prototyping. In this paper, we design algorithm that the cutting path of laser beam, on the SFFS(Solid Freeform Fabrication System), is controlled with constant speed. The designed algorithm for constant-speed path control is implemented and experimented in the CAFL$\^$VM/ (Computer Aided Fabrication of Lamination for Various Material) system, the new SFFS which was developed in this paper.

  • PDF

산업용 SFFS (Solid Freeform Fabrication System)을 위한 PC 기반 제어기 (PC-based Controller for Industrial Solid Freeform Fabrication System)

  • 박남수;황면중;이두용
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.73-77
    • /
    • 2004
  • This paper presents a PC-based controller of industrial SFFS(Solid Freeform Fabrication System). The SFFS has multiple sub-controllers for the building room, the powder room, the temperature, and the density of oxygen in the chambers. Hence the main PC-based controller should effectively and timely send commands to the sub-controllers, and monitor the overall SLS process. The required actuators and sensors are selected to optimize the overall performance of the SFFS.

  • PDF

산업용 임의형상제작(Solid Freeform Fabrication)시스템의 공정변수 최적화 (Process Optimization of Industrial Solid Freeform Fabrication System)

  • 곽성조;이두용
    • 대한기계학회논문집A
    • /
    • 제32권7호
    • /
    • pp.602-609
    • /
    • 2008
  • This paper presents experimental optimization of process parameters for a newly developed SFF(Solid Freeform Fabrication) system. Two critical process parameters, layering thickness and curing period, which have a large effect on the quality of the product, are optimized through experiments. Specimens are produced using layering thicknesses of 60, 80, 100, 120, 140, and $160\;{\mu}m$ and curing periods of 0, 10, 20, and 30 minutes under the same processing conditions, i.e., build-room temperature, feed-room temperature, roller speed, laser power, scan speed, and scan spacing. The specimens are tested to compare and analyze performance indices such as thickness accuracy, flatness, stress-strain characteristics, and porosity. The experimental result indicates that layering thickness of $80{\sim}100\;{\mu}m$ and curing period of $20{\sim}30$ minutes are recommended for the developed industrial SFF system.

자유 형상 제작 기술 및 이의 조직 공학 적용 (Solid freeform fabrication and its application to tissue engineering)

  • 강현욱;이진우;김종영;조동우
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.1415-1418
    • /
    • 2008
  • Scaffold fabrication for regenerating functional human tissues has an important role in tissue engineering, and there has been much progress in research on scaffold fabrication. However, current methods are limited by the mechanical properties of existing biodegradable materials and the irregular structures that they produce. Recently, Solid freeform fabrication (SFF) technology was remarked by fabricating 3D free-form micro-structures. Among SFF technologies, we tried to fabricate scaffolds using micro-stereolithography which contain the highest resolution of all SFF technologies and precision deposition system which can use various biomaterials. And we developed the CAD/CAM system to automate the process of scaffold fabrication and fabricate the patient customized scaffolds. These results showed the unlimited possibilities of our SFF technologies in tissue engineering.

  • PDF

신속성형기술 전용 벌집구조 형상 모델링 기술 개발 (Geometric Modeling of Honeycomb Structural Geometry for Solid Freeform Fabrication)

  • 지해성
    • 한국CDE학회논문집
    • /
    • 제4권3호
    • /
    • pp.180-189
    • /
    • 1999
  • Solid freeform fabrication technology, widely known as rapid prototyping an rapid tooling, can create physical part directly from digital model by accumulating layers of a given material. Providing a tremendous flexibility of a part geometry that they can fabricate, these technologies present a opportunity or the creation of new products that can not be made with existing technologies. For this to be possible, however, various design environments including different fabrication processes needs to be considered at the time of design, and finding an appropriate design solution for the new product by combining necessary design communications become increasingly complex as environmental condition become diverse. This paper proposes a geometric modeling paradigm for design and fabrication of a new product, honeycomb structural geometry.

  • PDF

UV Curing 공정을 이용한 오피스용 SFF System 개발 (Development of Office Type SFF System)

  • 권정재;조현택;백영종;김동수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.1400-1403
    • /
    • 2007
  • The 3DP(three dimensional printing) technology is one of the SFF(solid freeform fabrication) technologies which has recently come into a spotlight due to its suitability to various field. A manufacturing process of product is using many pattern formation technology. The 3DP technology uses multi nozzle that can fabricate three dimensional object of high speed and accuracy. In this paper, we introduce a development of the office type solid freeform fabrication system. This system is used UV resin and multi-piezo head.

  • PDF

Automation of Solid Freeform Fabrication System

  • Min, Sang-Hyun;Um, Tai-Joon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2002년도 ICCAS
    • /
    • pp.91.1-91
    • /
    • 2002
  • 1. Introduction Present study presents the basic concept of a Solid Freeform Fabrication System using a rapid prototyping procedure and optimal control for a transferring and accumulating system. And it developed a novel rapid prototyping process that can use ceramic or metal as well as polymer as a basic material. 2. Solid Freeform Fabrication System 2.1 Basic Theory A 3D CAD data of the model is converted to the 2D cross-section data of the slides. A ceramic or metal tape of thickness 0.5-1.5mm is cut by a laser beam with the cross-section data of the slide. A 3D model was obtained by transferring and accumulating the slides. The final product is manufactured by sin...

  • PDF

임의형상가공시스템의 정속위치제어 (A Study on Constant-Speed Position Control of Solid Freeform Fabrication System)

  • 정용래;고민국;김승우
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 합동 추계학술대회 논문집 정보 및 제어부문
    • /
    • pp.75-78
    • /
    • 2002
  • SFFS(Solid Freeform Fabrication System) is commercializing to rapid prototyping concept in world-wide some corporations including the States, have much technological problems yet and need new mode for agile solid freeform fabrication as well as prototyping. In this paper, we design an automatic control algorithm that the cutting path of laser beam, on the SFFS, is controlled with constant speed. The designed algorithm for constant-speed path control is implemented and experimented in the $CAFL^{VM}$ (Computer Aided Fabrication of Lamination for Various Material) system, the new SFFS which is developed in this paper. Its process is an automated fabrication method in which a 3D object is constructed from STL(SToreoLithography) 2D data, derived from CAD 3D image, by sequentially laminating the part cross-sections. The constant-speed path control is started from the STL data. After STL file is modified in data format to be available for control. The fabrication of the 2D part is, with constant speed, conducted from the 23 position data by laser beam. we confirm its high-performance through experiment results from the application into $CAFL^{VM}$ system.

  • PDF